![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylcom | Structured version Visualization version GIF version |
Description: Syllogism inference with commutation of antecedents. (Contributed by NM, 29-Aug-2004.) (Proof shortened by Mel L. O'Cat, 2-Feb-2006.) (Proof shortened by Stefan Allan, 23-Feb-2006.) |
Ref | Expression |
---|---|
sylcom.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
sylcom.2 | ⊢ (𝜓 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
sylcom | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylcom.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | sylcom.2 | . . 3 ⊢ (𝜓 → (𝜒 → 𝜃)) | |
3 | 2 | a2i 14 | . 2 ⊢ ((𝜓 → 𝜒) → (𝜓 → 𝜃)) |
4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: syl5com 31 syl6 35 syli 39 pm2.18d 127 mpbidi 241 2eu6 2655 r19.12OLD 3313 dmcosseq 5990 dmcosseqOLD 5991 iss 6055 funopg 6602 limuni3 7873 frxp 8150 wfrlem12OLD 8359 tz7.49 8484 dif1ennnALT 9309 enp1iOLD 9312 frfi 9319 unblem3 9328 isfinite2 9332 iunfi 9381 tcrank 9922 infdif 10246 isf34lem6 10418 axdc3lem4 10491 suplem1pr 11090 uzwo 12951 gsumcom2 20008 cmpsublem 23423 nrmhaus 23850 metrest 24553 finiunmbl 25593 h1datomi 31610 chirredlem1 32419 fnrelpredd 35082 mclsax 35554 lineext 36058 in-ax8 36207 ss-ax8 36208 onsucconni 36420 cbveud 37355 sdclem2 37729 heibor1lem 37796 iss2 38326 omabs2 43322 cotrintab 43604 tgblthelfgott 47740 setrec1lem2 48919 |
Copyright terms: Public domain | W3C validator |