| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylcom | Structured version Visualization version GIF version | ||
| Description: Syllogism inference with commutation of antecedents. (Contributed by NM, 29-Aug-2004.) (Proof shortened by Mel L. O'Cat, 2-Feb-2006.) (Proof shortened by Stefan Allan, 23-Feb-2006.) |
| Ref | Expression |
|---|---|
| sylcom.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| sylcom.2 | ⊢ (𝜓 → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| sylcom | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylcom.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | sylcom.2 | . . 3 ⊢ (𝜓 → (𝜒 → 𝜃)) | |
| 3 | 2 | a2i 14 | . 2 ⊢ ((𝜓 → 𝜒) → (𝜓 → 𝜃)) |
| 4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: syl5com 31 syl6 35 syli 39 pm2.18d 127 mpbidi 241 2eu6 2656 dmcosseq 5956 dmcosseqOLD 5957 iss 6022 funopg 6570 limuni3 7847 frxp 8125 wfrlem12OLD 8334 tz7.49 8459 dif1ennnALT 9283 enp1iOLD 9286 frfi 9293 unblem3 9302 isfinite2 9306 iunfi 9355 tcrank 9898 infdif 10222 isf34lem6 10394 axdc3lem4 10467 suplem1pr 11066 uzwo 12927 gsumcom2 19956 cmpsublem 23337 nrmhaus 23764 metrest 24463 finiunmbl 25497 h1datomi 31562 chirredlem1 32371 fnrelpredd 35120 mclsax 35591 lineext 36094 in-ax8 36242 ss-ax8 36243 onsucconni 36455 cbveud 37390 sdclem2 37766 heibor1lem 37833 iss2 38362 omabs2 43356 cotrintab 43638 tgblthelfgott 47829 setrec1lem2 49552 |
| Copyright terms: Public domain | W3C validator |