| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylcom | Structured version Visualization version GIF version | ||
| Description: Syllogism inference with commutation of antecedents. (Contributed by NM, 29-Aug-2004.) (Proof shortened by Mel L. O'Cat, 2-Feb-2006.) (Proof shortened by Stefan Allan, 23-Feb-2006.) |
| Ref | Expression |
|---|---|
| sylcom.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| sylcom.2 | ⊢ (𝜓 → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| sylcom | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylcom.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | sylcom.2 | . . 3 ⊢ (𝜓 → (𝜒 → 𝜃)) | |
| 3 | 2 | a2i 14 | . 2 ⊢ ((𝜓 → 𝜒) → (𝜓 → 𝜃)) |
| 4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: syl5com 31 syl6 35 syli 39 pm2.18d 127 mpbidi 241 2eu6 2654 dmcosseq 5921 dmcosseqOLD 5922 dmcosseqOLDOLD 5923 iss 5988 funopg 6520 limuni3 7788 frxp 8062 tz7.49 8370 dif1ennnALT 9168 frfi 9176 unblem3 9185 isfinite2 9189 iunfi 9234 tcrank 9784 infdif 10106 isf34lem6 10278 axdc3lem4 10351 suplem1pr 10950 uzwo 12811 gsumcom2 19889 cmpsublem 23315 nrmhaus 23742 metrest 24440 finiunmbl 25473 h1datomi 31563 chirredlem1 32372 fnrelpredd 35123 r1omhfb 35144 r1omhfbregs 35154 mclsax 35634 antnestlaw2 35757 lineext 36141 in-ax8 36289 ss-ax8 36290 onsucconni 36502 cbveud 37437 sdclem2 37802 heibor1lem 37869 iss2 38396 omabs2 43449 cotrintab 43731 tgblthelfgott 47939 setrec1lem2 49813 |
| Copyright terms: Public domain | W3C validator |