Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylcom | Structured version Visualization version GIF version |
Description: Syllogism inference with commutation of antecedents. (Contributed by NM, 29-Aug-2004.) (Proof shortened by Mel L. O'Cat, 2-Feb-2006.) (Proof shortened by Stefan Allan, 23-Feb-2006.) |
Ref | Expression |
---|---|
sylcom.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
sylcom.2 | ⊢ (𝜓 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
sylcom | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylcom.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | sylcom.2 | . . 3 ⊢ (𝜓 → (𝜒 → 𝜃)) | |
3 | 2 | a2i 14 | . 2 ⊢ ((𝜓 → 𝜒) → (𝜓 → 𝜃)) |
4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: syl5com 31 syl6 35 syli 39 pm2.18d 127 mpbidi 244 2eu6 2678 r19.12 3248 dmcosseq 5814 iss 5875 funopg 6369 limuni3 7566 frxp 7825 wfrlem12 7976 tz7.49 8091 dif1enOLD 8787 enp1i 8789 frfi 8796 unblem3 8805 isfinite2 8809 iunfi 8845 tcrank 9346 infdif 9669 isf34lem6 9840 axdc3lem4 9913 suplem1pr 10512 uzwo 12351 gsumcom2 19163 cmpsublem 22099 nrmhaus 22526 metrest 23226 finiunmbl 24244 h1datomi 29463 chirredlem1 30272 fnrelpredd 32590 mclsax 33047 lineext 33927 onsucconni 34175 cbveud 35069 sdclem2 35460 heibor1lem 35527 iss2 36041 cotrintab 40687 tgblthelfgott 44700 setrec1lem2 45609 |
Copyright terms: Public domain | W3C validator |