![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylcom | Structured version Visualization version GIF version |
Description: Syllogism inference with commutation of antecedents. (Contributed by NM, 29-Aug-2004.) (Proof shortened by Mel L. O'Cat, 2-Feb-2006.) (Proof shortened by Stefan Allan, 23-Feb-2006.) |
Ref | Expression |
---|---|
sylcom.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
sylcom.2 | ⊢ (𝜓 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
sylcom | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylcom.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | sylcom.2 | . . 3 ⊢ (𝜓 → (𝜒 → 𝜃)) | |
3 | 2 | a2i 14 | . 2 ⊢ ((𝜓 → 𝜒) → (𝜓 → 𝜃)) |
4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: syl5com 31 syl6 35 syli 39 pm2.18d 127 mpbidi 240 2eu6 2651 r19.12OLD 3311 dmcosseq 5972 iss 6035 funopg 6582 limuni3 7845 frxp 8117 wfrlem12OLD 8326 tz7.49 8451 dif1ennnALT 9283 enp1iOLD 9286 frfi 9294 unblem3 9303 isfinite2 9307 iunfi 9346 tcrank 9885 infdif 10210 isf34lem6 10381 axdc3lem4 10454 suplem1pr 11053 uzwo 12902 gsumcom2 19891 cmpsublem 23223 nrmhaus 23650 metrest 24353 finiunmbl 25393 h1datomi 31267 chirredlem1 32076 fnrelpredd 34556 mclsax 35024 lineext 35518 onsucconni 35786 cbveud 36717 sdclem2 37074 heibor1lem 37141 iss2 37677 omabs2 42545 cotrintab 42828 tgblthelfgott 46942 setrec1lem2 47895 |
Copyright terms: Public domain | W3C validator |