| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylcom | Structured version Visualization version GIF version | ||
| Description: Syllogism inference with commutation of antecedents. (Contributed by NM, 29-Aug-2004.) (Proof shortened by Mel L. O'Cat, 2-Feb-2006.) (Proof shortened by Stefan Allan, 23-Feb-2006.) |
| Ref | Expression |
|---|---|
| sylcom.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| sylcom.2 | ⊢ (𝜓 → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| sylcom | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylcom.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | sylcom.2 | . . 3 ⊢ (𝜓 → (𝜒 → 𝜃)) | |
| 3 | 2 | a2i 14 | . 2 ⊢ ((𝜓 → 𝜒) → (𝜓 → 𝜃)) |
| 4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: syl5com 31 syl6 35 syli 39 pm2.18d 127 mpbidi 241 2eu6 2652 dmcosseq 5917 dmcosseqOLD 5918 dmcosseqOLDOLD 5919 iss 5984 funopg 6515 limuni3 7782 frxp 8056 tz7.49 8364 dif1ennnALT 9161 frfi 9169 unblem3 9178 isfinite2 9182 iunfi 9227 tcrank 9774 infdif 10096 isf34lem6 10268 axdc3lem4 10341 suplem1pr 10940 uzwo 12806 gsumcom2 19885 cmpsublem 23312 nrmhaus 23739 metrest 24437 finiunmbl 25470 h1datomi 31556 chirredlem1 32365 fnrelpredd 35097 r1omhfbregs 35121 mclsax 35601 antnestlaw2 35724 lineext 36109 in-ax8 36257 ss-ax8 36258 onsucconni 36470 cbveud 37405 sdclem2 37781 heibor1lem 37848 iss2 38371 omabs2 43364 cotrintab 43646 tgblthelfgott 47845 setrec1lem2 49719 |
| Copyright terms: Public domain | W3C validator |