![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylcom | Structured version Visualization version GIF version |
Description: Syllogism inference with commutation of antecedents. (Contributed by NM, 29-Aug-2004.) (Proof shortened by Mel L. O'Cat, 2-Feb-2006.) (Proof shortened by Stefan Allan, 23-Feb-2006.) |
Ref | Expression |
---|---|
sylcom.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
sylcom.2 | ⊢ (𝜓 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
sylcom | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylcom.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | sylcom.2 | . . 3 ⊢ (𝜓 → (𝜒 → 𝜃)) | |
3 | 2 | a2i 14 | . 2 ⊢ ((𝜓 → 𝜒) → (𝜓 → 𝜃)) |
4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: syl5com 31 syl6 35 syli 39 pm2.18d 127 mpbidi 241 2eu6 2660 r19.12OLD 3321 dmcosseq 5999 dmcosseqOLD 6000 iss 6064 funopg 6612 limuni3 7889 frxp 8167 wfrlem12OLD 8376 tz7.49 8501 dif1ennnALT 9339 enp1iOLD 9342 frfi 9349 unblem3 9358 isfinite2 9362 iunfi 9411 tcrank 9953 infdif 10277 isf34lem6 10449 axdc3lem4 10522 suplem1pr 11121 uzwo 12976 gsumcom2 20017 cmpsublem 23428 nrmhaus 23855 metrest 24558 finiunmbl 25598 h1datomi 31613 chirredlem1 32422 fnrelpredd 35065 mclsax 35537 lineext 36040 in-ax8 36190 ss-ax8 36191 onsucconni 36403 cbveud 37338 sdclem2 37702 heibor1lem 37769 iss2 38300 omabs2 43294 cotrintab 43576 tgblthelfgott 47689 setrec1lem2 48780 |
Copyright terms: Public domain | W3C validator |