| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylcom | Structured version Visualization version GIF version | ||
| Description: Syllogism inference with commutation of antecedents. (Contributed by NM, 29-Aug-2004.) (Proof shortened by Mel L. O'Cat, 2-Feb-2006.) (Proof shortened by Stefan Allan, 23-Feb-2006.) |
| Ref | Expression |
|---|---|
| sylcom.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| sylcom.2 | ⊢ (𝜓 → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| sylcom | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylcom.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | sylcom.2 | . . 3 ⊢ (𝜓 → (𝜒 → 𝜃)) | |
| 3 | 2 | a2i 14 | . 2 ⊢ ((𝜓 → 𝜒) → (𝜓 → 𝜃)) |
| 4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: syl5com 31 syl6 35 syli 39 pm2.18d 127 mpbidi 241 2eu6 2650 dmcosseq 5923 dmcosseqOLD 5924 dmcosseqOLDOLD 5925 iss 5990 funopg 6520 limuni3 7792 frxp 8066 tz7.49 8374 dif1ennnALT 9180 enp1iOLD 9183 frfi 9190 unblem3 9199 isfinite2 9203 iunfi 9252 tcrank 9799 infdif 10121 isf34lem6 10293 axdc3lem4 10366 suplem1pr 10965 uzwo 12830 gsumcom2 19872 cmpsublem 23302 nrmhaus 23729 metrest 24428 finiunmbl 25461 h1datomi 31543 chirredlem1 32352 fnrelpredd 35055 mclsax 35541 antnestlaw2 35664 lineext 36049 in-ax8 36197 ss-ax8 36198 onsucconni 36410 cbveud 37345 sdclem2 37721 heibor1lem 37788 iss2 38311 omabs2 43305 cotrintab 43587 tgblthelfgott 47800 setrec1lem2 49674 |
| Copyright terms: Public domain | W3C validator |