Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylcom | Structured version Visualization version GIF version |
Description: Syllogism inference with commutation of antecedents. (Contributed by NM, 29-Aug-2004.) (Proof shortened by Mel L. O'Cat, 2-Feb-2006.) (Proof shortened by Stefan Allan, 23-Feb-2006.) |
Ref | Expression |
---|---|
sylcom.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
sylcom.2 | ⊢ (𝜓 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
sylcom | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylcom.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | sylcom.2 | . . 3 ⊢ (𝜓 → (𝜒 → 𝜃)) | |
3 | 2 | a2i 14 | . 2 ⊢ ((𝜓 → 𝜒) → (𝜓 → 𝜃)) |
4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: syl5com 31 syl6 35 syli 39 pm2.18d 127 mpbidi 240 2eu6 2658 r19.12OLD 3253 dmcosseq 5871 iss 5932 funopg 6452 limuni3 7674 frxp 7938 wfrlem12OLD 8122 tz7.49 8246 dif1enALT 8980 enp1i 8982 frfi 8989 unblem3 8998 isfinite2 9002 iunfi 9037 tcrank 9573 infdif 9896 isf34lem6 10067 axdc3lem4 10140 suplem1pr 10739 uzwo 12580 gsumcom2 19491 cmpsublem 22458 nrmhaus 22885 metrest 23586 finiunmbl 24613 h1datomi 29844 chirredlem1 30653 fnrelpredd 32961 mclsax 33431 lineext 34305 onsucconni 34553 cbveud 35470 sdclem2 35827 heibor1lem 35894 iss2 36406 cotrintab 41111 tgblthelfgott 45155 setrec1lem2 46280 |
Copyright terms: Public domain | W3C validator |