![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylcom | Structured version Visualization version GIF version |
Description: Syllogism inference with commutation of antecedents. (Contributed by NM, 29-Aug-2004.) (Proof shortened by Mel L. O'Cat, 2-Feb-2006.) (Proof shortened by Stefan Allan, 23-Feb-2006.) |
Ref | Expression |
---|---|
sylcom.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
sylcom.2 | ⊢ (𝜓 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
sylcom | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylcom.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | sylcom.2 | . . 3 ⊢ (𝜓 → (𝜒 → 𝜃)) | |
3 | 2 | a2i 14 | . 2 ⊢ ((𝜓 → 𝜒) → (𝜓 → 𝜃)) |
4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: syl5com 31 syl6 35 syli 39 pm2.18d 127 mpbidi 240 2eu6 2650 r19.12OLD 3310 dmcosseq 5971 iss 6034 funopg 6581 limuni3 7843 frxp 8114 wfrlem12OLD 8322 tz7.49 8447 dif1ennnALT 9279 enp1iOLD 9282 frfi 9290 unblem3 9299 isfinite2 9303 iunfi 9342 tcrank 9881 infdif 10206 isf34lem6 10377 axdc3lem4 10450 suplem1pr 11049 uzwo 12899 gsumcom2 19884 cmpsublem 23123 nrmhaus 23550 metrest 24253 finiunmbl 25293 h1datomi 31101 chirredlem1 31910 fnrelpredd 34390 mclsax 34858 lineext 35352 onsucconni 35625 cbveud 36556 sdclem2 36913 heibor1lem 36980 iss2 37516 omabs2 42384 cotrintab 42667 tgblthelfgott 46781 setrec1lem2 47820 |
Copyright terms: Public domain | W3C validator |