![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sylcom | Structured version Visualization version GIF version |
Description: Syllogism inference with commutation of antecedents. (Contributed by NM, 29-Aug-2004.) (Proof shortened by Mel L. O'Cat, 2-Feb-2006.) (Proof shortened by Stefan Allan, 23-Feb-2006.) |
Ref | Expression |
---|---|
sylcom.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
sylcom.2 | ⊢ (𝜓 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
sylcom | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylcom.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | sylcom.2 | . . 3 ⊢ (𝜓 → (𝜒 → 𝜃)) | |
3 | 2 | a2i 14 | . 2 ⊢ ((𝜓 → 𝜒) → (𝜓 → 𝜃)) |
4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: syl5com 31 syl6 35 syli 39 pm2.18d 127 mpbidi 240 2eu6 2653 r19.12OLD 3313 dmcosseq 5971 iss 6034 funopg 6580 limuni3 7838 frxp 8109 wfrlem12OLD 8317 tz7.49 8442 dif1ennnALT 9274 enp1iOLD 9277 frfi 9285 unblem3 9294 isfinite2 9298 iunfi 9337 tcrank 9876 infdif 10201 isf34lem6 10372 axdc3lem4 10445 suplem1pr 11044 uzwo 12892 gsumcom2 19838 cmpsublem 22895 nrmhaus 23322 metrest 24025 finiunmbl 25053 h1datomi 30822 chirredlem1 31631 fnrelpredd 34081 mclsax 34549 lineext 35037 onsucconni 35311 cbveud 36242 sdclem2 36599 heibor1lem 36666 iss2 37202 omabs2 42068 cotrintab 42351 tgblthelfgott 46470 setrec1lem2 47687 |
Copyright terms: Public domain | W3C validator |