Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sylcom | Structured version Visualization version GIF version |
Description: Syllogism inference with commutation of antecedents. (Contributed by NM, 29-Aug-2004.) (Proof shortened by Mel L. O'Cat, 2-Feb-2006.) (Proof shortened by Stefan Allan, 23-Feb-2006.) |
Ref | Expression |
---|---|
sylcom.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
sylcom.2 | ⊢ (𝜓 → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
sylcom | ⊢ (𝜑 → (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylcom.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | sylcom.2 | . . 3 ⊢ (𝜓 → (𝜒 → 𝜃)) | |
3 | 2 | a2i 14 | . 2 ⊢ ((𝜓 → 𝜒) → (𝜓 → 𝜃)) |
4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: syl5com 31 syl6 35 syli 39 pm2.18d 127 mpbidi 240 2eu6 2658 r19.12OLD 3258 dmcosseq 5882 iss 5943 funopg 6468 limuni3 7699 frxp 7967 wfrlem12OLD 8151 tz7.49 8276 dif1enALT 9050 enp1i 9052 frfi 9059 unblem3 9068 isfinite2 9072 iunfi 9107 tcrank 9642 infdif 9965 isf34lem6 10136 axdc3lem4 10209 suplem1pr 10808 uzwo 12651 gsumcom2 19576 cmpsublem 22550 nrmhaus 22977 metrest 23680 finiunmbl 24708 h1datomi 29943 chirredlem1 30752 fnrelpredd 33061 mclsax 33531 lineext 34378 onsucconni 34626 cbveud 35543 sdclem2 35900 heibor1lem 35967 iss2 36479 cotrintab 41222 tgblthelfgott 45267 setrec1lem2 46394 |
Copyright terms: Public domain | W3C validator |