MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sylcom Structured version   Visualization version   GIF version

Theorem sylcom 30
Description: Syllogism inference with commutation of antecedents. (Contributed by NM, 29-Aug-2004.) (Proof shortened by Mel L. O'Cat, 2-Feb-2006.) (Proof shortened by Stefan Allan, 23-Feb-2006.)
Hypotheses
Ref Expression
sylcom.1 (𝜑 → (𝜓𝜒))
sylcom.2 (𝜓 → (𝜒𝜃))
Assertion
Ref Expression
sylcom (𝜑 → (𝜓𝜃))

Proof of Theorem sylcom
StepHypRef Expression
1 sylcom.1 . 2 (𝜑 → (𝜓𝜒))
2 sylcom.2 . . 3 (𝜓 → (𝜒𝜃))
32a2i 14 . 2 ((𝜓𝜒) → (𝜓𝜃))
41, 3syl 17 1 (𝜑 → (𝜓𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  syl5com  31  syl6  35  syli  39  pm2.18d  127  mpbidi  241  2eu6  2654  dmcosseq  5921  dmcosseqOLD  5922  dmcosseqOLDOLD  5923  iss  5988  funopg  6520  limuni3  7788  frxp  8062  tz7.49  8370  dif1ennnALT  9168  frfi  9176  unblem3  9185  isfinite2  9189  iunfi  9234  tcrank  9784  infdif  10106  isf34lem6  10278  axdc3lem4  10351  suplem1pr  10950  uzwo  12811  gsumcom2  19889  cmpsublem  23315  nrmhaus  23742  metrest  24440  finiunmbl  25473  h1datomi  31563  chirredlem1  32372  fnrelpredd  35123  r1omhfb  35144  r1omhfbregs  35154  mclsax  35634  antnestlaw2  35757  lineext  36141  in-ax8  36289  ss-ax8  36290  onsucconni  36502  cbveud  37437  sdclem2  37802  heibor1lem  37869  iss2  38396  omabs2  43449  cotrintab  43731  tgblthelfgott  47939  setrec1lem2  49813
  Copyright terms: Public domain W3C validator