| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylcom | Structured version Visualization version GIF version | ||
| Description: Syllogism inference with commutation of antecedents. (Contributed by NM, 29-Aug-2004.) (Proof shortened by Mel L. O'Cat, 2-Feb-2006.) (Proof shortened by Stefan Allan, 23-Feb-2006.) |
| Ref | Expression |
|---|---|
| sylcom.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| sylcom.2 | ⊢ (𝜓 → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| sylcom | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylcom.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | sylcom.2 | . . 3 ⊢ (𝜓 → (𝜒 → 𝜃)) | |
| 3 | 2 | a2i 14 | . 2 ⊢ ((𝜓 → 𝜒) → (𝜓 → 𝜃)) |
| 4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: syl5com 31 syl6 35 syli 39 pm2.18d 127 mpbidi 241 2eu6 2650 dmcosseq 5940 dmcosseqOLD 5941 iss 6006 funopg 6550 limuni3 7828 frxp 8105 tz7.49 8413 dif1ennnALT 9222 enp1iOLD 9225 frfi 9232 unblem3 9241 isfinite2 9245 iunfi 9294 tcrank 9837 infdif 10161 isf34lem6 10333 axdc3lem4 10406 suplem1pr 11005 uzwo 12870 gsumcom2 19905 cmpsublem 23286 nrmhaus 23713 metrest 24412 finiunmbl 25445 h1datomi 31510 chirredlem1 32319 fnrelpredd 35079 mclsax 35556 antnestlaw2 35679 lineext 36064 in-ax8 36212 ss-ax8 36213 onsucconni 36425 cbveud 37360 sdclem2 37736 heibor1lem 37803 iss2 38326 omabs2 43321 cotrintab 43603 tgblthelfgott 47816 setrec1lem2 49677 |
| Copyright terms: Public domain | W3C validator |