| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sylcom | Structured version Visualization version GIF version | ||
| Description: Syllogism inference with commutation of antecedents. (Contributed by NM, 29-Aug-2004.) (Proof shortened by Mel L. O'Cat, 2-Feb-2006.) (Proof shortened by Stefan Allan, 23-Feb-2006.) |
| Ref | Expression |
|---|---|
| sylcom.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| sylcom.2 | ⊢ (𝜓 → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| sylcom | ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylcom.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | sylcom.2 | . . 3 ⊢ (𝜓 → (𝜒 → 𝜃)) | |
| 3 | 2 | a2i 14 | . 2 ⊢ ((𝜓 → 𝜒) → (𝜓 → 𝜃)) |
| 4 | 1, 3 | syl 17 | 1 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: syl5com 31 syl6 35 syli 39 pm2.18d 127 mpbidi 241 2eu6 2651 dmcosseq 5943 dmcosseqOLD 5944 iss 6009 funopg 6553 limuni3 7831 frxp 8108 tz7.49 8416 dif1ennnALT 9229 enp1iOLD 9232 frfi 9239 unblem3 9248 isfinite2 9252 iunfi 9301 tcrank 9844 infdif 10168 isf34lem6 10340 axdc3lem4 10413 suplem1pr 11012 uzwo 12877 gsumcom2 19912 cmpsublem 23293 nrmhaus 23720 metrest 24419 finiunmbl 25452 h1datomi 31517 chirredlem1 32326 fnrelpredd 35086 mclsax 35563 antnestlaw2 35686 lineext 36071 in-ax8 36219 ss-ax8 36220 onsucconni 36432 cbveud 37367 sdclem2 37743 heibor1lem 37810 iss2 38333 omabs2 43328 cotrintab 43610 tgblthelfgott 47820 setrec1lem2 49681 |
| Copyright terms: Public domain | W3C validator |