Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ax-i2m1 | Structured version Visualization version GIF version |
Description: i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom 12 of 22 for real and complex numbers, justified by Theorem axi2m1 10846. (Contributed by NM, 29-Jan-1995.) |
Ref | Expression |
---|---|
ax-i2m1 | ⊢ ((i · i) + 1) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ci 10804 | . . . 4 class i | |
2 | cmul 10807 | . . . 4 class · | |
3 | 1, 1, 2 | co 7255 | . . 3 class (i · i) |
4 | c1 10803 | . . 3 class 1 | |
5 | caddc 10805 | . . 3 class + | |
6 | 3, 4, 5 | co 7255 | . 2 class ((i · i) + 1) |
7 | cc0 10802 | . 2 class 0 | |
8 | 6, 7 | wceq 1539 | 1 wff ((i · i) + 1) = 0 |
Colors of variables: wff setvar class |
This axiom is referenced by: 0cn 10898 mul02lem2 11082 addid1 11085 cnegex2 11087 ine0 11340 ixi 11534 inelr 11893 c0exALT 40210 sn-1ne2 40216 re1m1e0m0 40301 reixi 40325 sn-inelr 40356 |
Copyright terms: Public domain | W3C validator |