Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ax-i2m1 | Structured version Visualization version GIF version |
Description: i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom 12 of 22 for real and complex numbers, justified by Theorem axi2m1 10924. (Contributed by NM, 29-Jan-1995.) |
Ref | Expression |
---|---|
ax-i2m1 | ⊢ ((i · i) + 1) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ci 10882 | . . . 4 class i | |
2 | cmul 10885 | . . . 4 class · | |
3 | 1, 1, 2 | co 7284 | . . 3 class (i · i) |
4 | c1 10881 | . . 3 class 1 | |
5 | caddc 10883 | . . 3 class + | |
6 | 3, 4, 5 | co 7284 | . 2 class ((i · i) + 1) |
7 | cc0 10880 | . 2 class 0 | |
8 | 6, 7 | wceq 1539 | 1 wff ((i · i) + 1) = 0 |
Colors of variables: wff setvar class |
This axiom is referenced by: 0cn 10976 mul02lem2 11161 addid1 11164 cnegex2 11166 ine0 11419 ixi 11613 inelr 11972 c0exALT 40296 sn-1ne2 40302 re1m1e0m0 40387 reixi 40411 sn-inelr 40442 |
Copyright terms: Public domain | W3C validator |