![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ax-i2m1 | Structured version Visualization version GIF version |
Description: i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom 12 of 22 for real and complex numbers, justified by Theorem axi2m1 11228. (Contributed by NM, 29-Jan-1995.) |
Ref | Expression |
---|---|
ax-i2m1 | ⊢ ((i · i) + 1) = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ci 11186 | . . . 4 class i | |
2 | cmul 11189 | . . . 4 class · | |
3 | 1, 1, 2 | co 7448 | . . 3 class (i · i) |
4 | c1 11185 | . . 3 class 1 | |
5 | caddc 11187 | . . 3 class + | |
6 | 3, 4, 5 | co 7448 | . 2 class ((i · i) + 1) |
7 | cc0 11184 | . 2 class 0 | |
8 | 6, 7 | wceq 1537 | 1 wff ((i · i) + 1) = 0 |
Colors of variables: wff setvar class |
This axiom is referenced by: 0cn 11282 mul02lem2 11467 addrid 11470 cnegex2 11472 ine0 11725 ixi 11919 inelr 12283 c0exALT 42247 sn-1ne2 42254 re1m1e0m0 42373 reixi 42398 sn-inelr 42443 |
Copyright terms: Public domain | W3C validator |