MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax-i2m1 Structured version   Visualization version   GIF version

Axiom ax-i2m1 11252
Description: i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom 12 of 22 for real and complex numbers, justified by Theorem axi2m1 11228. (Contributed by NM, 29-Jan-1995.)
Assertion
Ref Expression
ax-i2m1 ((i · i) + 1) = 0

Detailed syntax breakdown of Axiom ax-i2m1
StepHypRef Expression
1 ci 11186 . . . 4 class i
2 cmul 11189 . . . 4 class ·
31, 1, 2co 7448 . . 3 class (i · i)
4 c1 11185 . . 3 class 1
5 caddc 11187 . . 3 class +
63, 4, 5co 7448 . 2 class ((i · i) + 1)
7 cc0 11184 . 2 class 0
86, 7wceq 1537 1 wff ((i · i) + 1) = 0
Colors of variables: wff setvar class
This axiom is referenced by:  0cn  11282  mul02lem2  11467  addrid  11470  cnegex2  11472  ine0  11725  ixi  11919  inelr  12283  c0exALT  42247  sn-1ne2  42254  re1m1e0m0  42373  reixi  42398  sn-inelr  42443
  Copyright terms: Public domain W3C validator