| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inelr | Structured version Visualization version GIF version | ||
| Description: The imaginary unit i is not a real number. (Contributed by NM, 6-May-1999.) |
| Ref | Expression |
|---|---|
| inelr | ⊢ ¬ i ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neg1lt0 12150 | . . . 4 ⊢ -1 < 0 | |
| 2 | neg1rr 12148 | . . . . 5 ⊢ -1 ∈ ℝ | |
| 3 | 0re 11152 | . . . . 5 ⊢ 0 ∈ ℝ | |
| 4 | 2, 3 | ltnsymi 11269 | . . . 4 ⊢ (-1 < 0 → ¬ 0 < -1) |
| 5 | 1, 4 | ax-mp 5 | . . 3 ⊢ ¬ 0 < -1 |
| 6 | ixi 11783 | . . . 4 ⊢ (i · i) = -1 | |
| 7 | 6 | breq2i 5110 | . . 3 ⊢ (0 < (i · i) ↔ 0 < -1) |
| 8 | 5, 7 | mtbir 323 | . 2 ⊢ ¬ 0 < (i · i) |
| 9 | ine0 11589 | . . 3 ⊢ i ≠ 0 | |
| 10 | msqgt0 11674 | . . 3 ⊢ ((i ∈ ℝ ∧ i ≠ 0) → 0 < (i · i)) | |
| 11 | 9, 10 | mpan2 691 | . 2 ⊢ (i ∈ ℝ → 0 < (i · i)) |
| 12 | 8, 11 | mto 197 | 1 ⊢ ¬ i ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5102 (class class class)co 7369 ℝcr 11043 0cc0 11044 1c1 11045 ici 11046 · cmul 11049 < clt 11184 -cneg 11382 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 |
| This theorem is referenced by: rimul 12153 nthruc 16196 areacirclem4 37678 ine1 42275 sqrtnegnre 47281 requad01 47595 |
| Copyright terms: Public domain | W3C validator |