![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > inelr | Structured version Visualization version GIF version |
Description: The imaginary unit i is not a real number. (Contributed by NM, 6-May-1999.) |
Ref | Expression |
---|---|
inelr | ⊢ ¬ i ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ine0 11648 | . . 3 ⊢ i ≠ 0 | |
2 | 1 | neii 2942 | . 2 ⊢ ¬ i = 0 |
3 | 0lt1 11735 | . . . . 5 ⊢ 0 < 1 | |
4 | 0re 11215 | . . . . . 6 ⊢ 0 ∈ ℝ | |
5 | 1re 11213 | . . . . . 6 ⊢ 1 ∈ ℝ | |
6 | 4, 5 | ltnsymi 11332 | . . . . 5 ⊢ (0 < 1 → ¬ 1 < 0) |
7 | 3, 6 | ax-mp 5 | . . . 4 ⊢ ¬ 1 < 0 |
8 | ixi 11842 | . . . . . . 7 ⊢ (i · i) = -1 | |
9 | 5 | renegcli 11520 | . . . . . . 7 ⊢ -1 ∈ ℝ |
10 | 8, 9 | eqeltri 2829 | . . . . . 6 ⊢ (i · i) ∈ ℝ |
11 | 4, 10, 5 | ltadd1i 11767 | . . . . 5 ⊢ (0 < (i · i) ↔ (0 + 1) < ((i · i) + 1)) |
12 | ax-1cn 11167 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
13 | 12 | addlidi 11401 | . . . . . 6 ⊢ (0 + 1) = 1 |
14 | ax-i2m1 11177 | . . . . . 6 ⊢ ((i · i) + 1) = 0 | |
15 | 13, 14 | breq12i 5157 | . . . . 5 ⊢ ((0 + 1) < ((i · i) + 1) ↔ 1 < 0) |
16 | 11, 15 | bitri 274 | . . . 4 ⊢ (0 < (i · i) ↔ 1 < 0) |
17 | 7, 16 | mtbir 322 | . . 3 ⊢ ¬ 0 < (i · i) |
18 | msqgt0 11733 | . . . . 5 ⊢ ((i ∈ ℝ ∧ i ≠ 0) → 0 < (i · i)) | |
19 | 18 | ex 413 | . . . 4 ⊢ (i ∈ ℝ → (i ≠ 0 → 0 < (i · i))) |
20 | 19 | necon1bd 2958 | . . 3 ⊢ (i ∈ ℝ → (¬ 0 < (i · i) → i = 0)) |
21 | 17, 20 | mpi 20 | . 2 ⊢ (i ∈ ℝ → i = 0) |
22 | 2, 21 | mto 196 | 1 ⊢ ¬ i ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 class class class wbr 5148 (class class class)co 7408 ℝcr 11108 0cc0 11109 1c1 11110 ici 11111 + caddc 11112 · cmul 11114 < clt 11247 -cneg 11444 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 |
This theorem is referenced by: rimul 12202 nthruc 16194 areacirclem4 36574 sqrtnegnre 46005 requad01 46279 |
Copyright terms: Public domain | W3C validator |