Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inelr | Structured version Visualization version GIF version |
Description: The imaginary unit i is not a real number. (Contributed by NM, 6-May-1999.) |
Ref | Expression |
---|---|
inelr | ⊢ ¬ i ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ine0 11511 | . . 3 ⊢ i ≠ 0 | |
2 | 1 | neii 2942 | . 2 ⊢ ¬ i = 0 |
3 | 0lt1 11598 | . . . . 5 ⊢ 0 < 1 | |
4 | 0re 11078 | . . . . . 6 ⊢ 0 ∈ ℝ | |
5 | 1re 11076 | . . . . . 6 ⊢ 1 ∈ ℝ | |
6 | 4, 5 | ltnsymi 11195 | . . . . 5 ⊢ (0 < 1 → ¬ 1 < 0) |
7 | 3, 6 | ax-mp 5 | . . . 4 ⊢ ¬ 1 < 0 |
8 | ixi 11705 | . . . . . . 7 ⊢ (i · i) = -1 | |
9 | 5 | renegcli 11383 | . . . . . . 7 ⊢ -1 ∈ ℝ |
10 | 8, 9 | eqeltri 2833 | . . . . . 6 ⊢ (i · i) ∈ ℝ |
11 | 4, 10, 5 | ltadd1i 11630 | . . . . 5 ⊢ (0 < (i · i) ↔ (0 + 1) < ((i · i) + 1)) |
12 | ax-1cn 11030 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
13 | 12 | addid2i 11264 | . . . . . 6 ⊢ (0 + 1) = 1 |
14 | ax-i2m1 11040 | . . . . . 6 ⊢ ((i · i) + 1) = 0 | |
15 | 13, 14 | breq12i 5101 | . . . . 5 ⊢ ((0 + 1) < ((i · i) + 1) ↔ 1 < 0) |
16 | 11, 15 | bitri 274 | . . . 4 ⊢ (0 < (i · i) ↔ 1 < 0) |
17 | 7, 16 | mtbir 322 | . . 3 ⊢ ¬ 0 < (i · i) |
18 | msqgt0 11596 | . . . . 5 ⊢ ((i ∈ ℝ ∧ i ≠ 0) → 0 < (i · i)) | |
19 | 18 | ex 413 | . . . 4 ⊢ (i ∈ ℝ → (i ≠ 0 → 0 < (i · i))) |
20 | 19 | necon1bd 2958 | . . 3 ⊢ (i ∈ ℝ → (¬ 0 < (i · i) → i = 0)) |
21 | 17, 20 | mpi 20 | . 2 ⊢ (i ∈ ℝ → i = 0) |
22 | 2, 21 | mto 196 | 1 ⊢ ¬ i ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 class class class wbr 5092 (class class class)co 7337 ℝcr 10971 0cc0 10972 1c1 10973 ici 10974 + caddc 10975 · cmul 10977 < clt 11110 -cneg 11307 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-po 5532 df-so 5533 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 |
This theorem is referenced by: rimul 12065 nthruc 16060 areacirclem4 35973 sqrtnegnre 45150 requad01 45424 |
Copyright terms: Public domain | W3C validator |