Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inelr | Structured version Visualization version GIF version |
Description: The imaginary unit i is not a real number. (Contributed by NM, 6-May-1999.) |
Ref | Expression |
---|---|
inelr | ⊢ ¬ i ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ine0 11340 | . . 3 ⊢ i ≠ 0 | |
2 | 1 | neii 2944 | . 2 ⊢ ¬ i = 0 |
3 | 0lt1 11427 | . . . . 5 ⊢ 0 < 1 | |
4 | 0re 10908 | . . . . . 6 ⊢ 0 ∈ ℝ | |
5 | 1re 10906 | . . . . . 6 ⊢ 1 ∈ ℝ | |
6 | 4, 5 | ltnsymi 11024 | . . . . 5 ⊢ (0 < 1 → ¬ 1 < 0) |
7 | 3, 6 | ax-mp 5 | . . . 4 ⊢ ¬ 1 < 0 |
8 | ixi 11534 | . . . . . . 7 ⊢ (i · i) = -1 | |
9 | 5 | renegcli 11212 | . . . . . . 7 ⊢ -1 ∈ ℝ |
10 | 8, 9 | eqeltri 2835 | . . . . . 6 ⊢ (i · i) ∈ ℝ |
11 | 4, 10, 5 | ltadd1i 11459 | . . . . 5 ⊢ (0 < (i · i) ↔ (0 + 1) < ((i · i) + 1)) |
12 | ax-1cn 10860 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
13 | 12 | addid2i 11093 | . . . . . 6 ⊢ (0 + 1) = 1 |
14 | ax-i2m1 10870 | . . . . . 6 ⊢ ((i · i) + 1) = 0 | |
15 | 13, 14 | breq12i 5079 | . . . . 5 ⊢ ((0 + 1) < ((i · i) + 1) ↔ 1 < 0) |
16 | 11, 15 | bitri 274 | . . . 4 ⊢ (0 < (i · i) ↔ 1 < 0) |
17 | 7, 16 | mtbir 322 | . . 3 ⊢ ¬ 0 < (i · i) |
18 | msqgt0 11425 | . . . . 5 ⊢ ((i ∈ ℝ ∧ i ≠ 0) → 0 < (i · i)) | |
19 | 18 | ex 412 | . . . 4 ⊢ (i ∈ ℝ → (i ≠ 0 → 0 < (i · i))) |
20 | 19 | necon1bd 2960 | . . 3 ⊢ (i ∈ ℝ → (¬ 0 < (i · i) → i = 0)) |
21 | 17, 20 | mpi 20 | . 2 ⊢ (i ∈ ℝ → i = 0) |
22 | 2, 21 | mto 196 | 1 ⊢ ¬ i ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 class class class wbr 5070 (class class class)co 7255 ℝcr 10801 0cc0 10802 1c1 10803 ici 10804 + caddc 10805 · cmul 10807 < clt 10940 -cneg 11136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 |
This theorem is referenced by: rimul 11894 nthruc 15889 areacirclem4 35795 sqrtnegnre 44687 requad01 44961 |
Copyright terms: Public domain | W3C validator |