| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inelr | Structured version Visualization version GIF version | ||
| Description: The imaginary unit i is not a real number. (Contributed by NM, 6-May-1999.) |
| Ref | Expression |
|---|---|
| inelr | ⊢ ¬ i ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ine0 11672 | . . 3 ⊢ i ≠ 0 | |
| 2 | 1 | neii 2934 | . 2 ⊢ ¬ i = 0 |
| 3 | 0lt1 11759 | . . . . 5 ⊢ 0 < 1 | |
| 4 | 0re 11237 | . . . . . 6 ⊢ 0 ∈ ℝ | |
| 5 | 1re 11235 | . . . . . 6 ⊢ 1 ∈ ℝ | |
| 6 | 4, 5 | ltnsymi 11354 | . . . . 5 ⊢ (0 < 1 → ¬ 1 < 0) |
| 7 | 3, 6 | ax-mp 5 | . . . 4 ⊢ ¬ 1 < 0 |
| 8 | ixi 11866 | . . . . . . 7 ⊢ (i · i) = -1 | |
| 9 | 5 | renegcli 11544 | . . . . . . 7 ⊢ -1 ∈ ℝ |
| 10 | 8, 9 | eqeltri 2830 | . . . . . 6 ⊢ (i · i) ∈ ℝ |
| 11 | 4, 10, 5 | ltadd1i 11791 | . . . . 5 ⊢ (0 < (i · i) ↔ (0 + 1) < ((i · i) + 1)) |
| 12 | ax-1cn 11187 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
| 13 | 12 | addlidi 11423 | . . . . . 6 ⊢ (0 + 1) = 1 |
| 14 | ax-i2m1 11197 | . . . . . 6 ⊢ ((i · i) + 1) = 0 | |
| 15 | 13, 14 | breq12i 5128 | . . . . 5 ⊢ ((0 + 1) < ((i · i) + 1) ↔ 1 < 0) |
| 16 | 11, 15 | bitri 275 | . . . 4 ⊢ (0 < (i · i) ↔ 1 < 0) |
| 17 | 7, 16 | mtbir 323 | . . 3 ⊢ ¬ 0 < (i · i) |
| 18 | msqgt0 11757 | . . . . 5 ⊢ ((i ∈ ℝ ∧ i ≠ 0) → 0 < (i · i)) | |
| 19 | 18 | ex 412 | . . . 4 ⊢ (i ∈ ℝ → (i ≠ 0 → 0 < (i · i))) |
| 20 | 19 | necon1bd 2950 | . . 3 ⊢ (i ∈ ℝ → (¬ 0 < (i · i) → i = 0)) |
| 21 | 17, 20 | mpi 20 | . 2 ⊢ (i ∈ ℝ → i = 0) |
| 22 | 2, 21 | mto 197 | 1 ⊢ ¬ i ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 class class class wbr 5119 (class class class)co 7405 ℝcr 11128 0cc0 11129 1c1 11130 ici 11131 + caddc 11132 · cmul 11134 < clt 11269 -cneg 11467 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 |
| This theorem is referenced by: rimul 12231 nthruc 16270 areacirclem4 37735 ine1 42363 itrere 42367 sqrtnegnre 47336 requad01 47635 |
| Copyright terms: Public domain | W3C validator |