Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inelr | Structured version Visualization version GIF version |
Description: The imaginary unit i is not a real number. (Contributed by NM, 6-May-1999.) |
Ref | Expression |
---|---|
inelr | ⊢ ¬ i ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ine0 11267 | . . 3 ⊢ i ≠ 0 | |
2 | 1 | neii 2942 | . 2 ⊢ ¬ i = 0 |
3 | 0lt1 11354 | . . . . 5 ⊢ 0 < 1 | |
4 | 0re 10835 | . . . . . 6 ⊢ 0 ∈ ℝ | |
5 | 1re 10833 | . . . . . 6 ⊢ 1 ∈ ℝ | |
6 | 4, 5 | ltnsymi 10951 | . . . . 5 ⊢ (0 < 1 → ¬ 1 < 0) |
7 | 3, 6 | ax-mp 5 | . . . 4 ⊢ ¬ 1 < 0 |
8 | ixi 11461 | . . . . . . 7 ⊢ (i · i) = -1 | |
9 | 5 | renegcli 11139 | . . . . . . 7 ⊢ -1 ∈ ℝ |
10 | 8, 9 | eqeltri 2834 | . . . . . 6 ⊢ (i · i) ∈ ℝ |
11 | 4, 10, 5 | ltadd1i 11386 | . . . . 5 ⊢ (0 < (i · i) ↔ (0 + 1) < ((i · i) + 1)) |
12 | ax-1cn 10787 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
13 | 12 | addid2i 11020 | . . . . . 6 ⊢ (0 + 1) = 1 |
14 | ax-i2m1 10797 | . . . . . 6 ⊢ ((i · i) + 1) = 0 | |
15 | 13, 14 | breq12i 5062 | . . . . 5 ⊢ ((0 + 1) < ((i · i) + 1) ↔ 1 < 0) |
16 | 11, 15 | bitri 278 | . . . 4 ⊢ (0 < (i · i) ↔ 1 < 0) |
17 | 7, 16 | mtbir 326 | . . 3 ⊢ ¬ 0 < (i · i) |
18 | msqgt0 11352 | . . . . 5 ⊢ ((i ∈ ℝ ∧ i ≠ 0) → 0 < (i · i)) | |
19 | 18 | ex 416 | . . . 4 ⊢ (i ∈ ℝ → (i ≠ 0 → 0 < (i · i))) |
20 | 19 | necon1bd 2958 | . . 3 ⊢ (i ∈ ℝ → (¬ 0 < (i · i) → i = 0)) |
21 | 17, 20 | mpi 20 | . 2 ⊢ (i ∈ ℝ → i = 0) |
22 | 2, 21 | mto 200 | 1 ⊢ ¬ i ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 class class class wbr 5053 (class class class)co 7213 ℝcr 10728 0cc0 10729 1c1 10730 ici 10731 + caddc 10732 · cmul 10734 < clt 10867 -cneg 11063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-po 5468 df-so 5469 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 |
This theorem is referenced by: rimul 11821 nthruc 15813 areacirclem4 35605 sqrtnegnre 44472 requad01 44746 |
Copyright terms: Public domain | W3C validator |