Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnegex2 | Structured version Visualization version GIF version |
Description: Existence of a left inverse for addition. (Contributed by Scott Fenton, 3-Jan-2013.) |
Ref | Expression |
---|---|
cnegex2 | ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ (𝑥 + 𝐴) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-icn 10788 | . . . 4 ⊢ i ∈ ℂ | |
2 | 1, 1 | mulcli 10840 | . . 3 ⊢ (i · i) ∈ ℂ |
3 | mulcl 10813 | . . 3 ⊢ (((i · i) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((i · i) · 𝐴) ∈ ℂ) | |
4 | 2, 3 | mpan 690 | . 2 ⊢ (𝐴 ∈ ℂ → ((i · i) · 𝐴) ∈ ℂ) |
5 | mulid2 10832 | . . . 4 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) | |
6 | 5 | oveq2d 7229 | . . 3 ⊢ (𝐴 ∈ ℂ → (((i · i) · 𝐴) + (1 · 𝐴)) = (((i · i) · 𝐴) + 𝐴)) |
7 | ax-i2m1 10797 | . . . . 5 ⊢ ((i · i) + 1) = 0 | |
8 | 7 | oveq1i 7223 | . . . 4 ⊢ (((i · i) + 1) · 𝐴) = (0 · 𝐴) |
9 | ax-1cn 10787 | . . . . 5 ⊢ 1 ∈ ℂ | |
10 | adddir 10824 | . . . . 5 ⊢ (((i · i) ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (((i · i) + 1) · 𝐴) = (((i · i) · 𝐴) + (1 · 𝐴))) | |
11 | 2, 9, 10 | mp3an12 1453 | . . . 4 ⊢ (𝐴 ∈ ℂ → (((i · i) + 1) · 𝐴) = (((i · i) · 𝐴) + (1 · 𝐴))) |
12 | mul02 11010 | . . . 4 ⊢ (𝐴 ∈ ℂ → (0 · 𝐴) = 0) | |
13 | 8, 11, 12 | 3eqtr3a 2802 | . . 3 ⊢ (𝐴 ∈ ℂ → (((i · i) · 𝐴) + (1 · 𝐴)) = 0) |
14 | 6, 13 | eqtr3d 2779 | . 2 ⊢ (𝐴 ∈ ℂ → (((i · i) · 𝐴) + 𝐴) = 0) |
15 | oveq1 7220 | . . . 4 ⊢ (𝑥 = ((i · i) · 𝐴) → (𝑥 + 𝐴) = (((i · i) · 𝐴) + 𝐴)) | |
16 | 15 | eqeq1d 2739 | . . 3 ⊢ (𝑥 = ((i · i) · 𝐴) → ((𝑥 + 𝐴) = 0 ↔ (((i · i) · 𝐴) + 𝐴) = 0)) |
17 | 16 | rspcev 3537 | . 2 ⊢ ((((i · i) · 𝐴) ∈ ℂ ∧ (((i · i) · 𝐴) + 𝐴) = 0) → ∃𝑥 ∈ ℂ (𝑥 + 𝐴) = 0) |
18 | 4, 14, 17 | syl2anc 587 | 1 ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ (𝑥 + 𝐴) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2110 ∃wrex 3062 (class class class)co 7213 ℂcc 10727 0cc0 10729 1c1 10730 ici 10731 + caddc 10732 · cmul 10734 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-po 5468 df-so 5469 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-ltxr 10872 |
This theorem is referenced by: addcan 11016 |
Copyright terms: Public domain | W3C validator |