Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnegex2 | Structured version Visualization version GIF version |
Description: Existence of a left inverse for addition. (Contributed by Scott Fenton, 3-Jan-2013.) |
Ref | Expression |
---|---|
cnegex2 | ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ (𝑥 + 𝐴) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-icn 10861 | . . . 4 ⊢ i ∈ ℂ | |
2 | 1, 1 | mulcli 10913 | . . 3 ⊢ (i · i) ∈ ℂ |
3 | mulcl 10886 | . . 3 ⊢ (((i · i) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((i · i) · 𝐴) ∈ ℂ) | |
4 | 2, 3 | mpan 686 | . 2 ⊢ (𝐴 ∈ ℂ → ((i · i) · 𝐴) ∈ ℂ) |
5 | mulid2 10905 | . . . 4 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) | |
6 | 5 | oveq2d 7271 | . . 3 ⊢ (𝐴 ∈ ℂ → (((i · i) · 𝐴) + (1 · 𝐴)) = (((i · i) · 𝐴) + 𝐴)) |
7 | ax-i2m1 10870 | . . . . 5 ⊢ ((i · i) + 1) = 0 | |
8 | 7 | oveq1i 7265 | . . . 4 ⊢ (((i · i) + 1) · 𝐴) = (0 · 𝐴) |
9 | ax-1cn 10860 | . . . . 5 ⊢ 1 ∈ ℂ | |
10 | adddir 10897 | . . . . 5 ⊢ (((i · i) ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (((i · i) + 1) · 𝐴) = (((i · i) · 𝐴) + (1 · 𝐴))) | |
11 | 2, 9, 10 | mp3an12 1449 | . . . 4 ⊢ (𝐴 ∈ ℂ → (((i · i) + 1) · 𝐴) = (((i · i) · 𝐴) + (1 · 𝐴))) |
12 | mul02 11083 | . . . 4 ⊢ (𝐴 ∈ ℂ → (0 · 𝐴) = 0) | |
13 | 8, 11, 12 | 3eqtr3a 2803 | . . 3 ⊢ (𝐴 ∈ ℂ → (((i · i) · 𝐴) + (1 · 𝐴)) = 0) |
14 | 6, 13 | eqtr3d 2780 | . 2 ⊢ (𝐴 ∈ ℂ → (((i · i) · 𝐴) + 𝐴) = 0) |
15 | oveq1 7262 | . . . 4 ⊢ (𝑥 = ((i · i) · 𝐴) → (𝑥 + 𝐴) = (((i · i) · 𝐴) + 𝐴)) | |
16 | 15 | eqeq1d 2740 | . . 3 ⊢ (𝑥 = ((i · i) · 𝐴) → ((𝑥 + 𝐴) = 0 ↔ (((i · i) · 𝐴) + 𝐴) = 0)) |
17 | 16 | rspcev 3552 | . 2 ⊢ ((((i · i) · 𝐴) ∈ ℂ ∧ (((i · i) · 𝐴) + 𝐴) = 0) → ∃𝑥 ∈ ℂ (𝑥 + 𝐴) = 0) |
18 | 4, 14, 17 | syl2anc 583 | 1 ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ (𝑥 + 𝐴) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 (class class class)co 7255 ℂcc 10800 0cc0 10802 1c1 10803 ici 10804 + caddc 10805 · cmul 10807 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 |
This theorem is referenced by: addcan 11089 |
Copyright terms: Public domain | W3C validator |