![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnegex2 | Structured version Visualization version GIF version |
Description: Existence of a left inverse for addition. (Contributed by Scott Fenton, 3-Jan-2013.) |
Ref | Expression |
---|---|
cnegex2 | ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ (𝑥 + 𝐴) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-icn 11243 | . . . 4 ⊢ i ∈ ℂ | |
2 | 1, 1 | mulcli 11297 | . . 3 ⊢ (i · i) ∈ ℂ |
3 | mulcl 11268 | . . 3 ⊢ (((i · i) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((i · i) · 𝐴) ∈ ℂ) | |
4 | 2, 3 | mpan 689 | . 2 ⊢ (𝐴 ∈ ℂ → ((i · i) · 𝐴) ∈ ℂ) |
5 | mullid 11289 | . . . 4 ⊢ (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴) | |
6 | 5 | oveq2d 7464 | . . 3 ⊢ (𝐴 ∈ ℂ → (((i · i) · 𝐴) + (1 · 𝐴)) = (((i · i) · 𝐴) + 𝐴)) |
7 | ax-i2m1 11252 | . . . . 5 ⊢ ((i · i) + 1) = 0 | |
8 | 7 | oveq1i 7458 | . . . 4 ⊢ (((i · i) + 1) · 𝐴) = (0 · 𝐴) |
9 | ax-1cn 11242 | . . . . 5 ⊢ 1 ∈ ℂ | |
10 | adddir 11281 | . . . . 5 ⊢ (((i · i) ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (((i · i) + 1) · 𝐴) = (((i · i) · 𝐴) + (1 · 𝐴))) | |
11 | 2, 9, 10 | mp3an12 1451 | . . . 4 ⊢ (𝐴 ∈ ℂ → (((i · i) + 1) · 𝐴) = (((i · i) · 𝐴) + (1 · 𝐴))) |
12 | mul02 11468 | . . . 4 ⊢ (𝐴 ∈ ℂ → (0 · 𝐴) = 0) | |
13 | 8, 11, 12 | 3eqtr3a 2804 | . . 3 ⊢ (𝐴 ∈ ℂ → (((i · i) · 𝐴) + (1 · 𝐴)) = 0) |
14 | 6, 13 | eqtr3d 2782 | . 2 ⊢ (𝐴 ∈ ℂ → (((i · i) · 𝐴) + 𝐴) = 0) |
15 | oveq1 7455 | . . . 4 ⊢ (𝑥 = ((i · i) · 𝐴) → (𝑥 + 𝐴) = (((i · i) · 𝐴) + 𝐴)) | |
16 | 15 | eqeq1d 2742 | . . 3 ⊢ (𝑥 = ((i · i) · 𝐴) → ((𝑥 + 𝐴) = 0 ↔ (((i · i) · 𝐴) + 𝐴) = 0)) |
17 | 16 | rspcev 3635 | . 2 ⊢ ((((i · i) · 𝐴) ∈ ℂ ∧ (((i · i) · 𝐴) + 𝐴) = 0) → ∃𝑥 ∈ ℂ (𝑥 + 𝐴) = 0) |
18 | 4, 14, 17 | syl2anc 583 | 1 ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ (𝑥 + 𝐴) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 (class class class)co 7448 ℂcc 11182 0cc0 11184 1c1 11185 ici 11186 + caddc 11187 · cmul 11189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 |
This theorem is referenced by: addcan 11474 |
Copyright terms: Public domain | W3C validator |