MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnegex2 Structured version   Visualization version   GIF version

Theorem cnegex2 11422
Description: Existence of a left inverse for addition. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
cnegex2 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ (𝑥 + 𝐴) = 0)
Distinct variable group:   𝑥,𝐴

Proof of Theorem cnegex2
StepHypRef Expression
1 ax-icn 11193 . . . 4 i ∈ ℂ
21, 1mulcli 11247 . . 3 (i · i) ∈ ℂ
3 mulcl 11218 . . 3 (((i · i) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((i · i) · 𝐴) ∈ ℂ)
42, 3mpan 690 . 2 (𝐴 ∈ ℂ → ((i · i) · 𝐴) ∈ ℂ)
5 mullid 11239 . . . 4 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
65oveq2d 7426 . . 3 (𝐴 ∈ ℂ → (((i · i) · 𝐴) + (1 · 𝐴)) = (((i · i) · 𝐴) + 𝐴))
7 ax-i2m1 11202 . . . . 5 ((i · i) + 1) = 0
87oveq1i 7420 . . . 4 (((i · i) + 1) · 𝐴) = (0 · 𝐴)
9 ax-1cn 11192 . . . . 5 1 ∈ ℂ
10 adddir 11231 . . . . 5 (((i · i) ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (((i · i) + 1) · 𝐴) = (((i · i) · 𝐴) + (1 · 𝐴)))
112, 9, 10mp3an12 1453 . . . 4 (𝐴 ∈ ℂ → (((i · i) + 1) · 𝐴) = (((i · i) · 𝐴) + (1 · 𝐴)))
12 mul02 11418 . . . 4 (𝐴 ∈ ℂ → (0 · 𝐴) = 0)
138, 11, 123eqtr3a 2795 . . 3 (𝐴 ∈ ℂ → (((i · i) · 𝐴) + (1 · 𝐴)) = 0)
146, 13eqtr3d 2773 . 2 (𝐴 ∈ ℂ → (((i · i) · 𝐴) + 𝐴) = 0)
15 oveq1 7417 . . . 4 (𝑥 = ((i · i) · 𝐴) → (𝑥 + 𝐴) = (((i · i) · 𝐴) + 𝐴))
1615eqeq1d 2738 . . 3 (𝑥 = ((i · i) · 𝐴) → ((𝑥 + 𝐴) = 0 ↔ (((i · i) · 𝐴) + 𝐴) = 0))
1716rspcev 3606 . 2 ((((i · i) · 𝐴) ∈ ℂ ∧ (((i · i) · 𝐴) + 𝐴) = 0) → ∃𝑥 ∈ ℂ (𝑥 + 𝐴) = 0)
184, 14, 17syl2anc 584 1 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ (𝑥 + 𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wrex 3061  (class class class)co 7410  cc 11132  0cc0 11134  1c1 11135  ici 11136   + caddc 11137   · cmul 11139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-ltxr 11279
This theorem is referenced by:  addcan  11424
  Copyright terms: Public domain W3C validator