MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnegex2 Structured version   Visualization version   GIF version

Theorem cnegex2 11316
Description: Existence of a left inverse for addition. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
cnegex2 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ (𝑥 + 𝐴) = 0)
Distinct variable group:   𝑥,𝐴

Proof of Theorem cnegex2
StepHypRef Expression
1 ax-icn 11087 . . . 4 i ∈ ℂ
21, 1mulcli 11141 . . 3 (i · i) ∈ ℂ
3 mulcl 11112 . . 3 (((i · i) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((i · i) · 𝐴) ∈ ℂ)
42, 3mpan 690 . 2 (𝐴 ∈ ℂ → ((i · i) · 𝐴) ∈ ℂ)
5 mullid 11133 . . . 4 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
65oveq2d 7369 . . 3 (𝐴 ∈ ℂ → (((i · i) · 𝐴) + (1 · 𝐴)) = (((i · i) · 𝐴) + 𝐴))
7 ax-i2m1 11096 . . . . 5 ((i · i) + 1) = 0
87oveq1i 7363 . . . 4 (((i · i) + 1) · 𝐴) = (0 · 𝐴)
9 ax-1cn 11086 . . . . 5 1 ∈ ℂ
10 adddir 11125 . . . . 5 (((i · i) ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (((i · i) + 1) · 𝐴) = (((i · i) · 𝐴) + (1 · 𝐴)))
112, 9, 10mp3an12 1453 . . . 4 (𝐴 ∈ ℂ → (((i · i) + 1) · 𝐴) = (((i · i) · 𝐴) + (1 · 𝐴)))
12 mul02 11312 . . . 4 (𝐴 ∈ ℂ → (0 · 𝐴) = 0)
138, 11, 123eqtr3a 2788 . . 3 (𝐴 ∈ ℂ → (((i · i) · 𝐴) + (1 · 𝐴)) = 0)
146, 13eqtr3d 2766 . 2 (𝐴 ∈ ℂ → (((i · i) · 𝐴) + 𝐴) = 0)
15 oveq1 7360 . . . 4 (𝑥 = ((i · i) · 𝐴) → (𝑥 + 𝐴) = (((i · i) · 𝐴) + 𝐴))
1615eqeq1d 2731 . . 3 (𝑥 = ((i · i) · 𝐴) → ((𝑥 + 𝐴) = 0 ↔ (((i · i) · 𝐴) + 𝐴) = 0))
1716rspcev 3579 . 2 ((((i · i) · 𝐴) ∈ ℂ ∧ (((i · i) · 𝐴) + 𝐴) = 0) → ∃𝑥 ∈ ℂ (𝑥 + 𝐴) = 0)
184, 14, 17syl2anc 584 1 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ (𝑥 + 𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wrex 3053  (class class class)co 7353  cc 11026  0cc0 11028  1c1 11029  ici 11030   + caddc 11031   · cmul 11033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-ltxr 11173
This theorem is referenced by:  addcan  11318
  Copyright terms: Public domain W3C validator