MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnegex2 Structured version   Visualization version   GIF version

Theorem cnegex2 11472
Description: Existence of a left inverse for addition. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
cnegex2 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ (𝑥 + 𝐴) = 0)
Distinct variable group:   𝑥,𝐴

Proof of Theorem cnegex2
StepHypRef Expression
1 ax-icn 11243 . . . 4 i ∈ ℂ
21, 1mulcli 11297 . . 3 (i · i) ∈ ℂ
3 mulcl 11268 . . 3 (((i · i) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((i · i) · 𝐴) ∈ ℂ)
42, 3mpan 689 . 2 (𝐴 ∈ ℂ → ((i · i) · 𝐴) ∈ ℂ)
5 mullid 11289 . . . 4 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
65oveq2d 7464 . . 3 (𝐴 ∈ ℂ → (((i · i) · 𝐴) + (1 · 𝐴)) = (((i · i) · 𝐴) + 𝐴))
7 ax-i2m1 11252 . . . . 5 ((i · i) + 1) = 0
87oveq1i 7458 . . . 4 (((i · i) + 1) · 𝐴) = (0 · 𝐴)
9 ax-1cn 11242 . . . . 5 1 ∈ ℂ
10 adddir 11281 . . . . 5 (((i · i) ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (((i · i) + 1) · 𝐴) = (((i · i) · 𝐴) + (1 · 𝐴)))
112, 9, 10mp3an12 1451 . . . 4 (𝐴 ∈ ℂ → (((i · i) + 1) · 𝐴) = (((i · i) · 𝐴) + (1 · 𝐴)))
12 mul02 11468 . . . 4 (𝐴 ∈ ℂ → (0 · 𝐴) = 0)
138, 11, 123eqtr3a 2804 . . 3 (𝐴 ∈ ℂ → (((i · i) · 𝐴) + (1 · 𝐴)) = 0)
146, 13eqtr3d 2782 . 2 (𝐴 ∈ ℂ → (((i · i) · 𝐴) + 𝐴) = 0)
15 oveq1 7455 . . . 4 (𝑥 = ((i · i) · 𝐴) → (𝑥 + 𝐴) = (((i · i) · 𝐴) + 𝐴))
1615eqeq1d 2742 . . 3 (𝑥 = ((i · i) · 𝐴) → ((𝑥 + 𝐴) = 0 ↔ (((i · i) · 𝐴) + 𝐴) = 0))
1716rspcev 3635 . 2 ((((i · i) · 𝐴) ∈ ℂ ∧ (((i · i) · 𝐴) + 𝐴) = 0) → ∃𝑥 ∈ ℂ (𝑥 + 𝐴) = 0)
184, 14, 17syl2anc 583 1 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ (𝑥 + 𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wrex 3076  (class class class)co 7448  cc 11182  0cc0 11184  1c1 11185  ici 11186   + caddc 11187   · cmul 11189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-ltxr 11329
This theorem is referenced by:  addcan  11474
  Copyright terms: Public domain W3C validator