MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnegex2 Structured version   Visualization version   GIF version

Theorem cnegex2 11363
Description: Existence of a left inverse for addition. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
cnegex2 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ (𝑥 + 𝐴) = 0)
Distinct variable group:   𝑥,𝐴

Proof of Theorem cnegex2
StepHypRef Expression
1 ax-icn 11134 . . . 4 i ∈ ℂ
21, 1mulcli 11188 . . 3 (i · i) ∈ ℂ
3 mulcl 11159 . . 3 (((i · i) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((i · i) · 𝐴) ∈ ℂ)
42, 3mpan 690 . 2 (𝐴 ∈ ℂ → ((i · i) · 𝐴) ∈ ℂ)
5 mullid 11180 . . . 4 (𝐴 ∈ ℂ → (1 · 𝐴) = 𝐴)
65oveq2d 7406 . . 3 (𝐴 ∈ ℂ → (((i · i) · 𝐴) + (1 · 𝐴)) = (((i · i) · 𝐴) + 𝐴))
7 ax-i2m1 11143 . . . . 5 ((i · i) + 1) = 0
87oveq1i 7400 . . . 4 (((i · i) + 1) · 𝐴) = (0 · 𝐴)
9 ax-1cn 11133 . . . . 5 1 ∈ ℂ
10 adddir 11172 . . . . 5 (((i · i) ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (((i · i) + 1) · 𝐴) = (((i · i) · 𝐴) + (1 · 𝐴)))
112, 9, 10mp3an12 1453 . . . 4 (𝐴 ∈ ℂ → (((i · i) + 1) · 𝐴) = (((i · i) · 𝐴) + (1 · 𝐴)))
12 mul02 11359 . . . 4 (𝐴 ∈ ℂ → (0 · 𝐴) = 0)
138, 11, 123eqtr3a 2789 . . 3 (𝐴 ∈ ℂ → (((i · i) · 𝐴) + (1 · 𝐴)) = 0)
146, 13eqtr3d 2767 . 2 (𝐴 ∈ ℂ → (((i · i) · 𝐴) + 𝐴) = 0)
15 oveq1 7397 . . . 4 (𝑥 = ((i · i) · 𝐴) → (𝑥 + 𝐴) = (((i · i) · 𝐴) + 𝐴))
1615eqeq1d 2732 . . 3 (𝑥 = ((i · i) · 𝐴) → ((𝑥 + 𝐴) = 0 ↔ (((i · i) · 𝐴) + 𝐴) = 0))
1716rspcev 3591 . 2 ((((i · i) · 𝐴) ∈ ℂ ∧ (((i · i) · 𝐴) + 𝐴) = 0) → ∃𝑥 ∈ ℂ (𝑥 + 𝐴) = 0)
184, 14, 17syl2anc 584 1 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ (𝑥 + 𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wrex 3054  (class class class)co 7390  cc 11073  0cc0 11075  1c1 11076  ici 11077   + caddc 11078   · cmul 11080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-ltxr 11220
This theorem is referenced by:  addcan  11365
  Copyright terms: Public domain W3C validator