![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0cn | Structured version Visualization version GIF version |
Description: Zero is a complex number. See also 0cnALT 11524. (Contributed by NM, 19-Feb-2005.) |
Ref | Expression |
---|---|
0cn | ⊢ 0 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-i2m1 11252 | . 2 ⊢ ((i · i) + 1) = 0 | |
2 | ax-icn 11243 | . . . 4 ⊢ i ∈ ℂ | |
3 | mulcl 11268 | . . . 4 ⊢ ((i ∈ ℂ ∧ i ∈ ℂ) → (i · i) ∈ ℂ) | |
4 | 2, 2, 3 | mp2an 691 | . . 3 ⊢ (i · i) ∈ ℂ |
5 | ax-1cn 11242 | . . 3 ⊢ 1 ∈ ℂ | |
6 | addcl 11266 | . . 3 ⊢ (((i · i) ∈ ℂ ∧ 1 ∈ ℂ) → ((i · i) + 1) ∈ ℂ) | |
7 | 4, 5, 6 | mp2an 691 | . 2 ⊢ ((i · i) + 1) ∈ ℂ |
8 | 1, 7 | eqeltrri 2841 | 1 ⊢ 0 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 (class class class)co 7448 ℂcc 11182 0cc0 11184 1c1 11185 ici 11186 + caddc 11187 · cmul 11189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-mulcl 11246 ax-i2m1 11252 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-clel 2819 |
This theorem is referenced by: 0cnd 11283 c0ex 11284 1re 11290 00id 11465 mul02lem1 11466 mul02 11468 mul01 11469 addrid 11470 addlid 11473 negcl 11536 subid 11555 subid1 11556 neg0 11582 negid 11583 negsub 11584 subneg 11585 negneg 11586 negeq0 11590 negsubdi 11592 renegcli 11597 mulneg1 11726 msqge0 11811 ixi 11919 muleqadd 11934 diveq0 11959 div0 11982 div0OLD 11983 ofsubge0 12292 0m0e0 12413 nn0sscn 12558 elznn0 12654 ser0 14105 0exp0e1 14117 0exp 14148 sq0 14241 sqeqor 14265 binom2 14266 bcval5 14367 s1co 14882 shftval3 15125 shftidt2 15130 cjne0 15212 sqrt0 15290 abs0 15334 abs00bd 15340 abs2dif 15381 clim0 15552 climz 15595 serclim0 15623 rlimneg 15695 sumrblem 15759 fsumcvg 15760 summolem2a 15763 sumss 15772 fsumss 15773 fsumcvg2 15775 fsumsplit 15789 sumsplit 15816 fsumrelem 15855 fsumrlim 15859 fsumo1 15860 0fallfac 16085 0risefac 16086 binomfallfac 16089 fsumcube 16108 ef0 16139 eftlub 16157 sin0 16197 tan0 16199 divalglem9 16449 sadadd2lem2 16496 sadadd3 16507 bezout 16590 pcmpt2 16940 4sqlem11 17002 ramcl 17076 4001lem2 17189 odadd1 19890 cnaddablx 19910 cnaddabl 19911 cnaddid 19912 frgpnabllem1 19915 cncrng 21424 cncrngOLD 21425 cnfld0 21428 pzriprnglem5 21519 pzriprnglem6 21520 psdmplcl 22189 cnbl0 24815 cnblcld 24816 cnfldnm 24820 xrge0gsumle 24874 xrge0tsms 24875 cnheibor 25006 cnlmod 25192 csscld 25302 clsocv 25303 cnflduss 25409 cnfldcusp 25410 rrxmvallem 25457 rrxmval 25458 mbfss 25700 mbfmulc2lem 25701 0plef 25726 0pledm 25727 itg1ge0 25740 itg1addlem4 25753 itg1addlem4OLD 25754 itg2splitlem 25803 itg2addlem 25813 ibl0 25842 iblcnlem 25844 iblss2 25861 itgss3 25870 dvconst 25972 dvcnp2 25975 dvcnp2OLD 25976 dvrec 26013 dvexp3 26036 dveflem 26037 dv11cn 26060 lhop1lem 26072 plyun0 26256 plyeq0lem 26269 coeeulem 26283 coeeu 26284 coef3 26291 dgrle 26302 0dgrb 26305 coefv0 26307 coemulc 26314 coe1termlem 26317 coe1term 26318 dgr0 26322 dgrmulc 26331 dgrcolem2 26334 vieta1lem2 26371 iaa 26385 aareccl 26386 aalioulem3 26394 taylthlem2 26434 taylthlem2OLD 26435 psercn 26488 pserdvlem2 26490 abelthlem2 26494 abelthlem3 26495 abelthlem5 26497 abelthlem7 26500 abelth 26503 sin2kpi 26543 cos2kpi 26544 sinkpi 26582 efopn 26718 logtayl 26720 cxpval 26724 0cxp 26726 cxpexp 26728 cxpcl 26734 cxpge0 26743 mulcxplem 26744 mulcxp 26745 cxpmul2 26749 dvsqrt 26802 dvcnsqrt 26804 cxpcn3 26809 abscxpbnd 26814 efrlim 27030 efrlimOLD 27031 ftalem2 27135 ftalem3 27136 ftalem4 27137 ftalem5 27138 ftalem7 27140 prmorcht 27239 muinv 27254 1sgm2ppw 27262 logfacbnd3 27285 logexprlim 27287 dchrelbas2 27299 dchrmullid 27314 dchrfi 27317 dchrinv 27323 lgsdir2 27392 lgsdir 27394 addsqnreup 27505 dchrvmasumiflem1 27563 dchrvmasumiflem2 27564 rpvmasum2 27574 log2sumbnd 27606 selberg2lem 27612 logdivbnd 27618 ax5seglem8 28969 axlowdimlem6 28980 axlowdimlem13 28987 ex-co 30470 avril1 30495 vc0 30606 vcz 30607 cnaddabloOLD 30613 cnidOLD 30614 ipasslem8 30869 siilem2 30884 hvmul0 31056 hi01 31128 norm-iii 31172 h1de2ctlem 31587 pjmuli 31721 pjneli 31755 eigre 31867 eigorth 31870 elnlfn 31960 0cnfn 32012 0lnfn 32017 lnopunilem2 32043 xrge0tsmsd 33041 constrsscn 33730 qqh0 33930 qqhcn 33937 eulerpartlemgs2 34345 sgnneg 34505 breprexpnat 34611 hgt750lem2 34629 subfacp1lem6 35153 sinccvglem 35640 abs2sqle 35648 abs2sqlt 35649 tan2h 37572 poimirlem16 37596 poimirlem19 37599 poimirlem31 37611 mblfinlem2 37618 ovoliunnfl 37622 voliunnfl 37624 dvtanlem 37629 ftc1anclem5 37657 cntotbnd 37756 60lcm7e420 41967 lcmineqlem10 41995 3lexlogpow5ineq1 42011 sn-1ne2 42254 0tie0 42304 sn-it0e0 42391 addinvcom 42407 sn-0tie0 42415 fltnltalem 42617 flcidc 43131 dvconstbi 44303 expgrowth 44304 dvradcnv2 44316 binomcxplemdvbinom 44322 binomcxplemnotnn0 44325 xralrple3 45289 negcncfg 45802 ioodvbdlimc1 45854 ioodvbdlimc2 45856 itgsinexplem1 45875 stoweidlem26 45947 stoweidlem36 45957 stoweidlem55 45976 stirlinglem8 46002 fourierdlem103 46130 sqwvfoura 46149 sqwvfourb 46150 ovn0lem 46486 nn0sumshdiglemA 48353 nn0sumshdiglemB 48354 nn0sumshdiglem1 48355 sec0 48852 |
Copyright terms: Public domain | W3C validator |