| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0cn | Structured version Visualization version GIF version | ||
| Description: Zero is a complex number. See also 0cnALT 11351. (Contributed by NM, 19-Feb-2005.) |
| Ref | Expression |
|---|---|
| 0cn | ⊢ 0 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-i2m1 11077 | . 2 ⊢ ((i · i) + 1) = 0 | |
| 2 | ax-icn 11068 | . . . 4 ⊢ i ∈ ℂ | |
| 3 | mulcl 11093 | . . . 4 ⊢ ((i ∈ ℂ ∧ i ∈ ℂ) → (i · i) ∈ ℂ) | |
| 4 | 2, 2, 3 | mp2an 692 | . . 3 ⊢ (i · i) ∈ ℂ |
| 5 | ax-1cn 11067 | . . 3 ⊢ 1 ∈ ℂ | |
| 6 | addcl 11091 | . . 3 ⊢ (((i · i) ∈ ℂ ∧ 1 ∈ ℂ) → ((i · i) + 1) ∈ ℂ) | |
| 7 | 4, 5, 6 | mp2an 692 | . 2 ⊢ ((i · i) + 1) ∈ ℂ |
| 8 | 1, 7 | eqeltrri 2825 | 1 ⊢ 0 ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7349 ℂcc 11007 0cc0 11009 1c1 11010 ici 11011 + caddc 11012 · cmul 11014 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-mulcl 11071 ax-i2m1 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: 0cnd 11108 c0ex 11109 1re 11115 00id 11291 mul02lem1 11292 mul02 11294 mul01 11295 addrid 11296 addlid 11299 negcl 11363 subid 11383 subid1 11384 neg0 11410 negid 11411 negsub 11412 subneg 11413 negneg 11414 negeq0 11418 negsubdi 11420 renegcli 11425 mulneg1 11556 msqge0 11641 ixi 11749 muleqadd 11764 diveq0 11789 div0 11812 div0OLD 11813 ofsubge0 12127 0m0e0 12243 nn0sscn 12389 elznn0 12486 ser0 13961 0exp0e1 13973 0exp 14004 sq0 14099 sqeqor 14123 binom2 14124 bcval5 14225 s1co 14740 shftval3 14983 shftidt2 14988 cjne0 15070 sqrt0 15148 abs0 15192 abs00bd 15198 abs2dif 15240 clim0 15413 climz 15456 serclim0 15484 rlimneg 15554 sumrblem 15618 fsumcvg 15619 summolem2a 15622 sumss 15631 fsumss 15632 fsumcvg2 15634 fsumsplit 15648 sumsplit 15675 fsumrelem 15714 fsumrlim 15718 fsumo1 15719 0fallfac 15944 0risefac 15945 binomfallfac 15948 fsumcube 15967 ef0 15998 eftlub 16018 sin0 16058 tan0 16060 divalglem9 16312 sadadd2lem2 16361 sadadd3 16372 bezout 16454 pcmpt2 16805 4sqlem11 16867 ramcl 16941 4001lem2 17053 odadd1 19727 cnaddablx 19747 cnaddabl 19748 cnaddid 19749 frgpnabllem1 19752 cncrng 21295 cncrngOLD 21296 cnfld0 21299 pzriprnglem5 21392 pzriprnglem6 21393 psdmplcl 22047 cnbl0 24659 cnblcld 24660 cnfldnm 24664 cnn0opn 24673 xrge0gsumle 24720 xrge0tsms 24721 cnheibor 24852 cnlmod 25038 csscld 25147 clsocv 25148 cnflduss 25254 cnfldcusp 25255 rrxmvallem 25302 rrxmval 25303 mbfss 25545 mbfmulc2lem 25546 0plef 25571 0pledm 25572 itg1ge0 25585 itg1addlem4 25598 itg2splitlem 25647 itg2addlem 25657 ibl0 25686 iblcnlem 25688 iblss2 25705 itgss3 25714 dvconst 25816 dvcnp2 25819 dvcnp2OLD 25820 dveflem 25881 dv11cn 25904 lhop1lem 25916 plyun0 26100 plyeq0lem 26113 coeeulem 26127 coeeu 26128 coef3 26135 dgrle 26146 0dgrb 26149 coefv0 26151 coemulc 26158 coe1termlem 26161 coe1term 26162 dgr0 26166 dgrmulc 26175 dgrcolem2 26178 vieta1lem2 26217 iaa 26231 aareccl 26232 aalioulem3 26240 taylthlem2 26280 taylthlem2OLD 26281 psercn 26334 pserdvlem2 26336 abelthlem2 26340 abelthlem3 26341 abelthlem5 26343 abelthlem7 26346 abelth 26349 sin2kpi 26390 cos2kpi 26391 sinkpi 26429 efopn 26565 logtayl 26567 cxpval 26571 0cxp 26573 cxpexp 26575 cxpcl 26581 cxpge0 26590 mulcxplem 26591 mulcxp 26592 cxpmul2 26596 dvsqrt 26649 dvcnsqrt 26651 cxpcn3 26656 abscxpbnd 26661 efrlim 26877 efrlimOLD 26878 ftalem2 26982 ftalem3 26983 ftalem4 26984 ftalem5 26985 ftalem7 26987 prmorcht 27086 muinv 27101 1sgm2ppw 27109 logfacbnd3 27132 logexprlim 27134 dchrelbas2 27146 dchrmullid 27161 dchrfi 27164 dchrinv 27170 lgsdir2 27239 lgsdir 27241 addsqnreup 27352 dchrvmasumiflem1 27410 dchrvmasumiflem2 27411 rpvmasum2 27421 log2sumbnd 27453 selberg2lem 27459 logdivbnd 27465 ax5seglem8 28881 axlowdimlem6 28892 axlowdimlem13 28899 ex-co 30382 avril1 30407 vc0 30518 vcz 30519 cnaddabloOLD 30525 cnidOLD 30526 ipasslem8 30781 siilem2 30796 hvmul0 30968 hi01 31040 norm-iii 31084 h1de2ctlem 31499 pjmuli 31633 pjneli 31667 eigre 31779 eigorth 31782 elnlfn 31872 0cnfn 31924 0lnfn 31929 lnopunilem2 31955 sgnneg 32778 xrge0tsmsd 33015 constrsscn 33707 qqh0 33951 qqhcn 33958 eulerpartlemgs2 34348 breprexpnat 34602 hgt750lem2 34620 subfacp1lem6 35158 sinccvglem 35645 abs2sqle 35653 abs2sqlt 35654 tan2h 37592 poimirlem16 37616 poimirlem19 37619 poimirlem31 37631 mblfinlem2 37638 ovoliunnfl 37642 voliunnfl 37644 ftc1anclem5 37677 cntotbnd 37776 60lcm7e420 41983 lcmineqlem10 42011 3lexlogpow5ineq1 42027 sn-1ne2 42238 0tie0 42288 sn-it0e0 42389 addinvcom 42405 sn-0tie0 42424 fltnltalem 42635 flcidc 43143 dvconstbi 44307 expgrowth 44308 dvradcnv2 44320 binomcxplemdvbinom 44326 binomcxplemnotnn0 44329 xralrple3 45353 negcncfg 45862 ioodvbdlimc1 45914 ioodvbdlimc2 45916 itgsinexplem1 45935 stoweidlem26 46007 stoweidlem36 46017 stoweidlem55 46036 stirlinglem8 46062 fourierdlem103 46190 sqwvfoura 46209 sqwvfourb 46210 ovn0lem 46546 nn0sumshdiglemA 48604 nn0sumshdiglemB 48605 nn0sumshdiglem1 48606 sec0 49745 |
| Copyright terms: Public domain | W3C validator |