| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0cn | Structured version Visualization version GIF version | ||
| Description: Zero is a complex number. See also 0cnALT 11468. (Contributed by NM, 19-Feb-2005.) |
| Ref | Expression |
|---|---|
| 0cn | ⊢ 0 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-i2m1 11195 | . 2 ⊢ ((i · i) + 1) = 0 | |
| 2 | ax-icn 11186 | . . . 4 ⊢ i ∈ ℂ | |
| 3 | mulcl 11211 | . . . 4 ⊢ ((i ∈ ℂ ∧ i ∈ ℂ) → (i · i) ∈ ℂ) | |
| 4 | 2, 2, 3 | mp2an 692 | . . 3 ⊢ (i · i) ∈ ℂ |
| 5 | ax-1cn 11185 | . . 3 ⊢ 1 ∈ ℂ | |
| 6 | addcl 11209 | . . 3 ⊢ (((i · i) ∈ ℂ ∧ 1 ∈ ℂ) → ((i · i) + 1) ∈ ℂ) | |
| 7 | 4, 5, 6 | mp2an 692 | . 2 ⊢ ((i · i) + 1) ∈ ℂ |
| 8 | 1, 7 | eqeltrri 2831 | 1 ⊢ 0 ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 (class class class)co 7403 ℂcc 11125 0cc0 11127 1c1 11128 ici 11129 + caddc 11130 · cmul 11132 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-mulcl 11189 ax-i2m1 11195 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-clel 2809 |
| This theorem is referenced by: 0cnd 11226 c0ex 11227 1re 11233 00id 11408 mul02lem1 11409 mul02 11411 mul01 11412 addrid 11413 addlid 11416 negcl 11480 subid 11500 subid1 11501 neg0 11527 negid 11528 negsub 11529 subneg 11530 negneg 11531 negeq0 11535 negsubdi 11537 renegcli 11542 mulneg1 11671 msqge0 11756 ixi 11864 muleqadd 11879 diveq0 11904 div0 11927 div0OLD 11928 ofsubge0 12237 0m0e0 12358 nn0sscn 12504 elznn0 12601 ser0 14070 0exp0e1 14082 0exp 14113 sq0 14208 sqeqor 14232 binom2 14233 bcval5 14334 s1co 14850 shftval3 15093 shftidt2 15098 cjne0 15180 sqrt0 15258 abs0 15302 abs00bd 15308 abs2dif 15349 clim0 15520 climz 15563 serclim0 15591 rlimneg 15661 sumrblem 15725 fsumcvg 15726 summolem2a 15729 sumss 15738 fsumss 15739 fsumcvg2 15741 fsumsplit 15755 sumsplit 15782 fsumrelem 15821 fsumrlim 15825 fsumo1 15826 0fallfac 16051 0risefac 16052 binomfallfac 16055 fsumcube 16074 ef0 16105 eftlub 16125 sin0 16165 tan0 16167 divalglem9 16418 sadadd2lem2 16467 sadadd3 16478 bezout 16560 pcmpt2 16911 4sqlem11 16973 ramcl 17047 4001lem2 17159 odadd1 19827 cnaddablx 19847 cnaddabl 19848 cnaddid 19849 frgpnabllem1 19852 cncrng 21349 cncrngOLD 21350 cnfld0 21353 pzriprnglem5 21444 pzriprnglem6 21445 psdmplcl 22098 cnbl0 24710 cnblcld 24711 cnfldnm 24715 cnn0opn 24724 xrge0gsumle 24771 xrge0tsms 24772 cnheibor 24903 cnlmod 25089 csscld 25199 clsocv 25200 cnflduss 25306 cnfldcusp 25307 rrxmvallem 25354 rrxmval 25355 mbfss 25597 mbfmulc2lem 25598 0plef 25623 0pledm 25624 itg1ge0 25637 itg1addlem4 25650 itg2splitlem 25699 itg2addlem 25709 ibl0 25738 iblcnlem 25740 iblss2 25757 itgss3 25766 dvconst 25868 dvcnp2 25871 dvcnp2OLD 25872 dveflem 25933 dv11cn 25956 lhop1lem 25968 plyun0 26152 plyeq0lem 26165 coeeulem 26179 coeeu 26180 coef3 26187 dgrle 26198 0dgrb 26201 coefv0 26203 coemulc 26210 coe1termlem 26213 coe1term 26214 dgr0 26218 dgrmulc 26227 dgrcolem2 26230 vieta1lem2 26269 iaa 26283 aareccl 26284 aalioulem3 26292 taylthlem2 26332 taylthlem2OLD 26333 psercn 26386 pserdvlem2 26388 abelthlem2 26392 abelthlem3 26393 abelthlem5 26395 abelthlem7 26398 abelth 26401 sin2kpi 26442 cos2kpi 26443 sinkpi 26481 efopn 26617 logtayl 26619 cxpval 26623 0cxp 26625 cxpexp 26627 cxpcl 26633 cxpge0 26642 mulcxplem 26643 mulcxp 26644 cxpmul2 26648 dvsqrt 26701 dvcnsqrt 26703 cxpcn3 26708 abscxpbnd 26713 efrlim 26929 efrlimOLD 26930 ftalem2 27034 ftalem3 27035 ftalem4 27036 ftalem5 27037 ftalem7 27039 prmorcht 27138 muinv 27153 1sgm2ppw 27161 logfacbnd3 27184 logexprlim 27186 dchrelbas2 27198 dchrmullid 27213 dchrfi 27216 dchrinv 27222 lgsdir2 27291 lgsdir 27293 addsqnreup 27404 dchrvmasumiflem1 27462 dchrvmasumiflem2 27463 rpvmasum2 27473 log2sumbnd 27505 selberg2lem 27511 logdivbnd 27517 ax5seglem8 28861 axlowdimlem6 28872 axlowdimlem13 28879 ex-co 30365 avril1 30390 vc0 30501 vcz 30502 cnaddabloOLD 30508 cnidOLD 30509 ipasslem8 30764 siilem2 30779 hvmul0 30951 hi01 31023 norm-iii 31067 h1de2ctlem 31482 pjmuli 31616 pjneli 31650 eigre 31762 eigorth 31765 elnlfn 31855 0cnfn 31907 0lnfn 31912 lnopunilem2 31938 sgnneg 32758 xrge0tsmsd 33002 constrsscn 33720 qqh0 33961 qqhcn 33968 eulerpartlemgs2 34358 breprexpnat 34612 hgt750lem2 34630 subfacp1lem6 35153 sinccvglem 35640 abs2sqle 35648 abs2sqlt 35649 tan2h 37582 poimirlem16 37606 poimirlem19 37609 poimirlem31 37621 mblfinlem2 37628 ovoliunnfl 37632 voliunnfl 37634 ftc1anclem5 37667 cntotbnd 37766 60lcm7e420 41969 lcmineqlem10 41997 3lexlogpow5ineq1 42013 sn-1ne2 42262 0tie0 42311 sn-it0e0 42405 addinvcom 42421 sn-0tie0 42429 fltnltalem 42632 flcidc 43141 dvconstbi 44306 expgrowth 44307 dvradcnv2 44319 binomcxplemdvbinom 44325 binomcxplemnotnn0 44328 xralrple3 45349 negcncfg 45858 ioodvbdlimc1 45910 ioodvbdlimc2 45912 itgsinexplem1 45931 stoweidlem26 46003 stoweidlem36 46013 stoweidlem55 46032 stirlinglem8 46058 fourierdlem103 46186 sqwvfoura 46205 sqwvfourb 46206 ovn0lem 46542 nn0sumshdiglemA 48547 nn0sumshdiglemB 48548 nn0sumshdiglem1 48549 sec0 49572 |
| Copyright terms: Public domain | W3C validator |