| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0cn | Structured version Visualization version GIF version | ||
| Description: Zero is a complex number. See also 0cnALT 11348. (Contributed by NM, 19-Feb-2005.) |
| Ref | Expression |
|---|---|
| 0cn | ⊢ 0 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-i2m1 11074 | . 2 ⊢ ((i · i) + 1) = 0 | |
| 2 | ax-icn 11065 | . . . 4 ⊢ i ∈ ℂ | |
| 3 | mulcl 11090 | . . . 4 ⊢ ((i ∈ ℂ ∧ i ∈ ℂ) → (i · i) ∈ ℂ) | |
| 4 | 2, 2, 3 | mp2an 692 | . . 3 ⊢ (i · i) ∈ ℂ |
| 5 | ax-1cn 11064 | . . 3 ⊢ 1 ∈ ℂ | |
| 6 | addcl 11088 | . . 3 ⊢ (((i · i) ∈ ℂ ∧ 1 ∈ ℂ) → ((i · i) + 1) ∈ ℂ) | |
| 7 | 4, 5, 6 | mp2an 692 | . 2 ⊢ ((i · i) + 1) ∈ ℂ |
| 8 | 1, 7 | eqeltrri 2828 | 1 ⊢ 0 ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 (class class class)co 7346 ℂcc 11004 0cc0 11006 1c1 11007 ici 11008 + caddc 11009 · cmul 11011 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-mulcl 11068 ax-i2m1 11074 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-clel 2806 |
| This theorem is referenced by: 0cnd 11105 c0ex 11106 1re 11112 00id 11288 mul02lem1 11289 mul02 11291 mul01 11292 addrid 11293 addlid 11296 negcl 11360 subid 11380 subid1 11381 neg0 11407 negid 11408 negsub 11409 subneg 11410 negneg 11411 negeq0 11415 negsubdi 11417 renegcli 11422 mulneg1 11553 msqge0 11638 ixi 11746 muleqadd 11761 diveq0 11786 div0 11809 div0OLD 11810 ofsubge0 12124 0m0e0 12240 nn0sscn 12386 elznn0 12483 ser0 13961 0exp0e1 13973 0exp 14004 sq0 14099 sqeqor 14123 binom2 14124 bcval5 14225 s1co 14740 shftval3 14983 shftidt2 14988 cjne0 15070 sqrt0 15148 abs0 15192 abs00bd 15198 abs2dif 15240 clim0 15413 climz 15456 serclim0 15484 rlimneg 15554 sumrblem 15618 fsumcvg 15619 summolem2a 15622 sumss 15631 fsumss 15632 fsumcvg2 15634 fsumsplit 15648 sumsplit 15675 fsumrelem 15714 fsumrlim 15718 fsumo1 15719 0fallfac 15944 0risefac 15945 binomfallfac 15948 fsumcube 15967 ef0 15998 eftlub 16018 sin0 16058 tan0 16060 divalglem9 16312 sadadd2lem2 16361 sadadd3 16372 bezout 16454 pcmpt2 16805 4sqlem11 16867 ramcl 16941 4001lem2 17053 odadd1 19760 cnaddablx 19780 cnaddabl 19781 cnaddid 19782 frgpnabllem1 19785 cncrng 21325 cncrngOLD 21326 cnfld0 21329 pzriprnglem5 21422 pzriprnglem6 21423 psdmplcl 22077 cnbl0 24688 cnblcld 24689 cnfldnm 24693 cnn0opn 24702 xrge0gsumle 24749 xrge0tsms 24750 cnheibor 24881 cnlmod 25067 csscld 25176 clsocv 25177 cnflduss 25283 cnfldcusp 25284 rrxmvallem 25331 rrxmval 25332 mbfss 25574 mbfmulc2lem 25575 0plef 25600 0pledm 25601 itg1ge0 25614 itg1addlem4 25627 itg2splitlem 25676 itg2addlem 25686 ibl0 25715 iblcnlem 25717 iblss2 25734 itgss3 25743 dvconst 25845 dvcnp2 25848 dvcnp2OLD 25849 dveflem 25910 dv11cn 25933 lhop1lem 25945 plyun0 26129 plyeq0lem 26142 coeeulem 26156 coeeu 26157 coef3 26164 dgrle 26175 0dgrb 26178 coefv0 26180 coemulc 26187 coe1termlem 26190 coe1term 26191 dgr0 26195 dgrmulc 26204 dgrcolem2 26207 vieta1lem2 26246 iaa 26260 aareccl 26261 aalioulem3 26269 taylthlem2 26309 taylthlem2OLD 26310 psercn 26363 pserdvlem2 26365 abelthlem2 26369 abelthlem3 26370 abelthlem5 26372 abelthlem7 26375 abelth 26378 sin2kpi 26419 cos2kpi 26420 sinkpi 26458 efopn 26594 logtayl 26596 cxpval 26600 0cxp 26602 cxpexp 26604 cxpcl 26610 cxpge0 26619 mulcxplem 26620 mulcxp 26621 cxpmul2 26625 dvsqrt 26678 dvcnsqrt 26680 cxpcn3 26685 abscxpbnd 26690 efrlim 26906 efrlimOLD 26907 ftalem2 27011 ftalem3 27012 ftalem4 27013 ftalem5 27014 ftalem7 27016 prmorcht 27115 muinv 27130 1sgm2ppw 27138 logfacbnd3 27161 logexprlim 27163 dchrelbas2 27175 dchrmullid 27190 dchrfi 27193 dchrinv 27199 lgsdir2 27268 lgsdir 27270 addsqnreup 27381 dchrvmasumiflem1 27439 dchrvmasumiflem2 27440 rpvmasum2 27450 log2sumbnd 27482 selberg2lem 27488 logdivbnd 27494 ax5seglem8 28914 axlowdimlem6 28925 axlowdimlem13 28932 ex-co 30418 avril1 30443 vc0 30554 vcz 30555 cnaddabloOLD 30561 cnidOLD 30562 ipasslem8 30817 siilem2 30832 hvmul0 31004 hi01 31076 norm-iii 31120 h1de2ctlem 31535 pjmuli 31669 pjneli 31703 eigre 31815 eigorth 31818 elnlfn 31908 0cnfn 31960 0lnfn 31965 lnopunilem2 31991 sgnneg 32816 xrge0tsmsd 33042 constrsscn 33753 qqh0 33997 qqhcn 34004 eulerpartlemgs2 34393 breprexpnat 34647 hgt750lem2 34665 subfacp1lem6 35229 sinccvglem 35716 abs2sqle 35724 abs2sqlt 35725 tan2h 37660 poimirlem16 37684 poimirlem19 37687 poimirlem31 37699 mblfinlem2 37706 ovoliunnfl 37710 voliunnfl 37712 ftc1anclem5 37745 cntotbnd 37844 60lcm7e420 42051 lcmineqlem10 42079 3lexlogpow5ineq1 42095 sn-1ne2 42306 0tie0 42356 sn-it0e0 42457 addinvcom 42473 sn-0tie0 42492 fltnltalem 42703 flcidc 43211 dvconstbi 44375 expgrowth 44376 dvradcnv2 44388 binomcxplemdvbinom 44394 binomcxplemnotnn0 44397 xralrple3 45420 negcncfg 45927 ioodvbdlimc1 45979 ioodvbdlimc2 45981 itgsinexplem1 46000 stoweidlem26 46072 stoweidlem36 46082 stoweidlem55 46101 stirlinglem8 46127 fourierdlem103 46255 sqwvfoura 46274 sqwvfourb 46275 ovn0lem 46611 nn0sumshdiglemA 48659 nn0sumshdiglemB 48660 nn0sumshdiglem1 48661 sec0 49800 |
| Copyright terms: Public domain | W3C validator |