![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0cn | Structured version Visualization version GIF version |
Description: Zero is a complex number. See also 0cnALT 10670. (Contributed by NM, 19-Feb-2005.) |
Ref | Expression |
---|---|
0cn | ⊢ 0 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-i2m1 10399 | . 2 ⊢ ((i · i) + 1) = 0 | |
2 | ax-icn 10390 | . . . 4 ⊢ i ∈ ℂ | |
3 | mulcl 10415 | . . . 4 ⊢ ((i ∈ ℂ ∧ i ∈ ℂ) → (i · i) ∈ ℂ) | |
4 | 2, 2, 3 | mp2an 679 | . . 3 ⊢ (i · i) ∈ ℂ |
5 | ax-1cn 10389 | . . 3 ⊢ 1 ∈ ℂ | |
6 | addcl 10413 | . . 3 ⊢ (((i · i) ∈ ℂ ∧ 1 ∈ ℂ) → ((i · i) + 1) ∈ ℂ) | |
7 | 4, 5, 6 | mp2an 679 | . 2 ⊢ ((i · i) + 1) ∈ ℂ |
8 | 1, 7 | eqeltrri 2860 | 1 ⊢ 0 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2048 (class class class)co 6974 ℂcc 10329 0cc0 10331 1c1 10332 ici 10333 + caddc 10334 · cmul 10336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-ext 2747 ax-1cn 10389 ax-icn 10390 ax-addcl 10391 ax-mulcl 10393 ax-i2m1 10399 |
This theorem depends on definitions: df-bi 199 df-an 388 df-ex 1743 df-cleq 2768 df-clel 2843 |
This theorem is referenced by: 0cnd 10428 c0ex 10429 1re 10435 00id 10611 mul02lem1 10612 mul02 10614 mul01 10615 addid1 10616 addid2 10619 negcl 10682 subid 10702 subid1 10703 neg0 10729 negid 10730 negsub 10731 subneg 10732 negneg 10733 negeq0 10737 negsubdi 10739 renegcli 10744 mulneg1 10873 msqge0 10958 ixi 11066 muleqadd 11081 div0 11125 ofsubge0 11434 0m0e0 11564 nn0sscn 11709 elznn0 11805 ser0 13234 0exp0e1 13246 0exp 13276 sq0 13367 sqeqor 13390 binom2 13391 bcval5 13490 s1co 14051 shftval3 14290 shftidt2 14295 cjne0 14377 sqrt0 14456 abs0 14500 abs00bd 14506 abs2dif 14547 clim0 14718 climz 14761 serclim0 14789 rlimneg 14858 sumrblem 14922 fsumcvg 14923 summolem2a 14926 sumss 14935 fsumss 14936 fsumcvg2 14938 fsumsplit 14951 sumsplit 14977 fsumrelem 15016 fsumrlim 15020 fsumo1 15021 0fallfac 15245 0risefac 15246 binomfallfac 15249 fsumcube 15268 ef0 15298 eftlub 15316 sin0 15356 tan0 15358 divalglem9 15606 sadadd2lem2 15653 sadadd3 15664 bezout 15741 pcmpt2 16079 4sqlem11 16141 ramcl 16215 4001lem2 16325 odadd1 18718 cnaddablx 18738 cnaddabl 18739 cnaddid 18740 frgpnabllem1 18743 cncrng 20262 cnfld0 20265 cnbl0 23079 cnblcld 23080 cnfldnm 23084 xrge0gsumle 23138 xrge0tsms 23139 cnheibor 23256 cnlmod 23441 csscld 23549 clsocv 23550 cnflduss 23656 cnfldcusp 23657 rrxmvallem 23704 rrxmval 23705 mbfss 23944 mbfmulc2lem 23945 0plef 23970 0pledm 23971 itg1ge0 23984 itg1addlem4 23997 itg2splitlem 24046 itg2addlem 24056 ibl0 24084 iblcnlem 24086 iblss2 24103 itgss3 24112 dvconst 24211 dvcnp2 24214 dvrec 24249 dvexp3 24272 dveflem 24273 dv11cn 24295 lhop1lem 24307 plyun0 24484 plyeq0lem 24497 coeeulem 24511 coeeu 24512 coef3 24519 dgrle 24530 0dgrb 24533 coefv0 24535 coemulc 24542 coe1termlem 24545 coe1term 24546 dgr0 24549 dgrmulc 24558 dgrcolem2 24561 vieta1lem2 24597 iaa 24611 aareccl 24612 aalioulem3 24620 taylthlem2 24659 psercn 24711 pserdvlem2 24713 abelthlem2 24717 abelthlem3 24718 abelthlem5 24720 abelthlem7 24723 abelth 24726 sin2kpi 24766 cos2kpi 24767 sinkpi 24804 efopn 24936 logtayl 24938 cxpval 24942 0cxp 24944 cxpexp 24946 cxpcl 24952 cxpge0 24961 mulcxplem 24962 mulcxp 24963 cxpmul2 24967 dvsqrt 25018 dvcnsqrt 25020 cxpcn3 25024 abscxpbnd 25029 efrlim 25243 ftalem2 25347 ftalem3 25348 ftalem4 25349 ftalem5 25350 ftalem7 25352 prmorcht 25451 muinv 25466 1sgm2ppw 25472 logfacbnd3 25495 logexprlim 25497 dchrelbas2 25509 dchrmulid2 25524 dchrfi 25527 dchrinv 25533 lgsdir2 25602 lgsdir 25604 addsqnreup 25715 dchrvmasumiflem1 25773 dchrvmasumiflem2 25774 rpvmasum2 25784 log2sumbnd 25816 selberg2lem 25822 logdivbnd 25828 ax5seglem8 26419 axlowdimlem6 26430 axlowdimlem13 26437 ex-co 27989 avril1 28013 vc0 28122 vcz 28123 cnaddabloOLD 28129 cnidOLD 28130 ipasslem8 28385 siilem2 28400 hvmul0 28574 hi01 28646 norm-iii 28690 h1de2ctlem 29107 pjmuli 29241 pjneli 29275 eigre 29387 eigorth 29390 elnlfn 29480 0cnfn 29532 0lnfn 29537 lnopunilem2 29563 xrge0tsmsd 30521 qqh0 30860 qqhcn 30867 eulerpartlemgs2 31274 sgnneg 31435 breprexpnat 31544 hgt750lem2 31562 subfacp1lem6 32007 sinccvglem 32405 abs2sqle 32413 abs2sqlt 32414 tan2h 34303 poimirlem16 34327 poimirlem19 34330 poimirlem31 34342 mblfinlem2 34349 ovoliunnfl 34353 voliunnfl 34355 dvtanlem 34360 ftc1anclem5 34390 cntotbnd 34494 fltnltalem 38659 flcidc 39148 dvconstbi 40059 expgrowth 40060 dvradcnv2 40072 binomcxplemdvbinom 40078 binomcxplemnotnn0 40081 xralrple3 41050 negcncfg 41573 ioodvbdlimc1 41627 ioodvbdlimc2 41629 itgsinexplem1 41648 stoweidlem26 41721 stoweidlem36 41731 stoweidlem55 41750 stirlinglem8 41776 fourierdlem103 41904 sqwvfoura 41923 sqwvfourb 41924 ovn0lem 42257 nn0sumshdiglemA 44021 nn0sumshdiglemB 44022 nn0sumshdiglem1 44023 sec0 44200 |
Copyright terms: Public domain | W3C validator |