| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0cn | Structured version Visualization version GIF version | ||
| Description: Zero is a complex number. See also 0cnALT 11409. (Contributed by NM, 19-Feb-2005.) |
| Ref | Expression |
|---|---|
| 0cn | ⊢ 0 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-i2m1 11136 | . 2 ⊢ ((i · i) + 1) = 0 | |
| 2 | ax-icn 11127 | . . . 4 ⊢ i ∈ ℂ | |
| 3 | mulcl 11152 | . . . 4 ⊢ ((i ∈ ℂ ∧ i ∈ ℂ) → (i · i) ∈ ℂ) | |
| 4 | 2, 2, 3 | mp2an 692 | . . 3 ⊢ (i · i) ∈ ℂ |
| 5 | ax-1cn 11126 | . . 3 ⊢ 1 ∈ ℂ | |
| 6 | addcl 11150 | . . 3 ⊢ (((i · i) ∈ ℂ ∧ 1 ∈ ℂ) → ((i · i) + 1) ∈ ℂ) | |
| 7 | 4, 5, 6 | mp2an 692 | . 2 ⊢ ((i · i) + 1) ∈ ℂ |
| 8 | 1, 7 | eqeltrri 2825 | 1 ⊢ 0 ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7387 ℂcc 11066 0cc0 11068 1c1 11069 ici 11070 + caddc 11071 · cmul 11073 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-mulcl 11130 ax-i2m1 11136 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: 0cnd 11167 c0ex 11168 1re 11174 00id 11349 mul02lem1 11350 mul02 11352 mul01 11353 addrid 11354 addlid 11357 negcl 11421 subid 11441 subid1 11442 neg0 11468 negid 11469 negsub 11470 subneg 11471 negneg 11472 negeq0 11476 negsubdi 11478 renegcli 11483 mulneg1 11614 msqge0 11699 ixi 11807 muleqadd 11822 diveq0 11847 div0 11870 div0OLD 11871 ofsubge0 12185 0m0e0 12301 nn0sscn 12447 elznn0 12544 ser0 14019 0exp0e1 14031 0exp 14062 sq0 14157 sqeqor 14181 binom2 14182 bcval5 14283 s1co 14799 shftval3 15042 shftidt2 15047 cjne0 15129 sqrt0 15207 abs0 15251 abs00bd 15257 abs2dif 15299 clim0 15472 climz 15515 serclim0 15543 rlimneg 15613 sumrblem 15677 fsumcvg 15678 summolem2a 15681 sumss 15690 fsumss 15691 fsumcvg2 15693 fsumsplit 15707 sumsplit 15734 fsumrelem 15773 fsumrlim 15777 fsumo1 15778 0fallfac 16003 0risefac 16004 binomfallfac 16007 fsumcube 16026 ef0 16057 eftlub 16077 sin0 16117 tan0 16119 divalglem9 16371 sadadd2lem2 16420 sadadd3 16431 bezout 16513 pcmpt2 16864 4sqlem11 16926 ramcl 17000 4001lem2 17112 odadd1 19778 cnaddablx 19798 cnaddabl 19799 cnaddid 19800 frgpnabllem1 19803 cncrng 21300 cncrngOLD 21301 cnfld0 21304 pzriprnglem5 21395 pzriprnglem6 21396 psdmplcl 22049 cnbl0 24661 cnblcld 24662 cnfldnm 24666 cnn0opn 24675 xrge0gsumle 24722 xrge0tsms 24723 cnheibor 24854 cnlmod 25040 csscld 25149 clsocv 25150 cnflduss 25256 cnfldcusp 25257 rrxmvallem 25304 rrxmval 25305 mbfss 25547 mbfmulc2lem 25548 0plef 25573 0pledm 25574 itg1ge0 25587 itg1addlem4 25600 itg2splitlem 25649 itg2addlem 25659 ibl0 25688 iblcnlem 25690 iblss2 25707 itgss3 25716 dvconst 25818 dvcnp2 25821 dvcnp2OLD 25822 dveflem 25883 dv11cn 25906 lhop1lem 25918 plyun0 26102 plyeq0lem 26115 coeeulem 26129 coeeu 26130 coef3 26137 dgrle 26148 0dgrb 26151 coefv0 26153 coemulc 26160 coe1termlem 26163 coe1term 26164 dgr0 26168 dgrmulc 26177 dgrcolem2 26180 vieta1lem2 26219 iaa 26233 aareccl 26234 aalioulem3 26242 taylthlem2 26282 taylthlem2OLD 26283 psercn 26336 pserdvlem2 26338 abelthlem2 26342 abelthlem3 26343 abelthlem5 26345 abelthlem7 26348 abelth 26351 sin2kpi 26392 cos2kpi 26393 sinkpi 26431 efopn 26567 logtayl 26569 cxpval 26573 0cxp 26575 cxpexp 26577 cxpcl 26583 cxpge0 26592 mulcxplem 26593 mulcxp 26594 cxpmul2 26598 dvsqrt 26651 dvcnsqrt 26653 cxpcn3 26658 abscxpbnd 26663 efrlim 26879 efrlimOLD 26880 ftalem2 26984 ftalem3 26985 ftalem4 26986 ftalem5 26987 ftalem7 26989 prmorcht 27088 muinv 27103 1sgm2ppw 27111 logfacbnd3 27134 logexprlim 27136 dchrelbas2 27148 dchrmullid 27163 dchrfi 27166 dchrinv 27172 lgsdir2 27241 lgsdir 27243 addsqnreup 27354 dchrvmasumiflem1 27412 dchrvmasumiflem2 27413 rpvmasum2 27423 log2sumbnd 27455 selberg2lem 27461 logdivbnd 27467 ax5seglem8 28863 axlowdimlem6 28874 axlowdimlem13 28881 ex-co 30367 avril1 30392 vc0 30503 vcz 30504 cnaddabloOLD 30510 cnidOLD 30511 ipasslem8 30766 siilem2 30781 hvmul0 30953 hi01 31025 norm-iii 31069 h1de2ctlem 31484 pjmuli 31618 pjneli 31652 eigre 31764 eigorth 31767 elnlfn 31857 0cnfn 31909 0lnfn 31914 lnopunilem2 31940 sgnneg 32758 xrge0tsmsd 33002 constrsscn 33730 qqh0 33974 qqhcn 33981 eulerpartlemgs2 34371 breprexpnat 34625 hgt750lem2 34643 subfacp1lem6 35172 sinccvglem 35659 abs2sqle 35667 abs2sqlt 35668 tan2h 37606 poimirlem16 37630 poimirlem19 37633 poimirlem31 37645 mblfinlem2 37652 ovoliunnfl 37656 voliunnfl 37658 ftc1anclem5 37691 cntotbnd 37790 60lcm7e420 41998 lcmineqlem10 42026 3lexlogpow5ineq1 42042 sn-1ne2 42253 0tie0 42303 sn-it0e0 42404 addinvcom 42420 sn-0tie0 42439 fltnltalem 42650 flcidc 43159 dvconstbi 44323 expgrowth 44324 dvradcnv2 44336 binomcxplemdvbinom 44342 binomcxplemnotnn0 44345 xralrple3 45370 negcncfg 45879 ioodvbdlimc1 45931 ioodvbdlimc2 45933 itgsinexplem1 45952 stoweidlem26 46024 stoweidlem36 46034 stoweidlem55 46053 stirlinglem8 46079 fourierdlem103 46207 sqwvfoura 46226 sqwvfourb 46227 ovn0lem 46563 nn0sumshdiglemA 48608 nn0sumshdiglemB 48609 nn0sumshdiglem1 48610 sec0 49749 |
| Copyright terms: Public domain | W3C validator |