Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0cn | Structured version Visualization version GIF version |
Description: Zero is a complex number. See also 0cnALT 11209. (Contributed by NM, 19-Feb-2005.) |
Ref | Expression |
---|---|
0cn | ⊢ 0 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-i2m1 10939 | . 2 ⊢ ((i · i) + 1) = 0 | |
2 | ax-icn 10930 | . . . 4 ⊢ i ∈ ℂ | |
3 | mulcl 10955 | . . . 4 ⊢ ((i ∈ ℂ ∧ i ∈ ℂ) → (i · i) ∈ ℂ) | |
4 | 2, 2, 3 | mp2an 689 | . . 3 ⊢ (i · i) ∈ ℂ |
5 | ax-1cn 10929 | . . 3 ⊢ 1 ∈ ℂ | |
6 | addcl 10953 | . . 3 ⊢ (((i · i) ∈ ℂ ∧ 1 ∈ ℂ) → ((i · i) + 1) ∈ ℂ) | |
7 | 4, 5, 6 | mp2an 689 | . 2 ⊢ ((i · i) + 1) ∈ ℂ |
8 | 1, 7 | eqeltrri 2836 | 1 ⊢ 0 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 (class class class)co 7275 ℂcc 10869 0cc0 10871 1c1 10872 ici 10873 + caddc 10874 · cmul 10876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-mulcl 10933 ax-i2m1 10939 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2730 df-clel 2816 |
This theorem is referenced by: 0cnd 10968 c0ex 10969 1re 10975 00id 11150 mul02lem1 11151 mul02 11153 mul01 11154 addid1 11155 addid2 11158 negcl 11221 subid 11240 subid1 11241 neg0 11267 negid 11268 negsub 11269 subneg 11270 negneg 11271 negeq0 11275 negsubdi 11277 renegcli 11282 mulneg1 11411 msqge0 11496 ixi 11604 muleqadd 11619 div0 11663 ofsubge0 11972 0m0e0 12093 nn0sscn 12238 elznn0 12334 ser0 13775 0exp0e1 13787 0exp 13818 sq0 13909 sqeqor 13932 binom2 13933 bcval5 14032 s1co 14546 shftval3 14787 shftidt2 14792 cjne0 14874 sqrt0 14953 abs0 14997 abs00bd 15003 abs2dif 15044 clim0 15215 climz 15258 serclim0 15286 rlimneg 15358 sumrblem 15423 fsumcvg 15424 summolem2a 15427 sumss 15436 fsumss 15437 fsumcvg2 15439 fsumsplit 15453 sumsplit 15480 fsumrelem 15519 fsumrlim 15523 fsumo1 15524 0fallfac 15747 0risefac 15748 binomfallfac 15751 fsumcube 15770 ef0 15800 eftlub 15818 sin0 15858 tan0 15860 divalglem9 16110 sadadd2lem2 16157 sadadd3 16168 bezout 16251 pcmpt2 16594 4sqlem11 16656 ramcl 16730 4001lem2 16843 odadd1 19449 cnaddablx 19469 cnaddabl 19470 cnaddid 19471 frgpnabllem1 19474 cncrng 20619 cnfld0 20622 cnbl0 23937 cnblcld 23938 cnfldnm 23942 xrge0gsumle 23996 xrge0tsms 23997 cnheibor 24118 cnlmod 24303 csscld 24413 clsocv 24414 cnflduss 24520 cnfldcusp 24521 rrxmvallem 24568 rrxmval 24569 mbfss 24810 mbfmulc2lem 24811 0plef 24836 0pledm 24837 itg1ge0 24850 itg1addlem4 24863 itg1addlem4OLD 24864 itg2splitlem 24913 itg2addlem 24923 ibl0 24951 iblcnlem 24953 iblss2 24970 itgss3 24979 dvconst 25081 dvcnp2 25084 dvrec 25119 dvexp3 25142 dveflem 25143 dv11cn 25165 lhop1lem 25177 plyun0 25358 plyeq0lem 25371 coeeulem 25385 coeeu 25386 coef3 25393 dgrle 25404 0dgrb 25407 coefv0 25409 coemulc 25416 coe1termlem 25419 coe1term 25420 dgr0 25423 dgrmulc 25432 dgrcolem2 25435 vieta1lem2 25471 iaa 25485 aareccl 25486 aalioulem3 25494 taylthlem2 25533 psercn 25585 pserdvlem2 25587 abelthlem2 25591 abelthlem3 25592 abelthlem5 25594 abelthlem7 25597 abelth 25600 sin2kpi 25640 cos2kpi 25641 sinkpi 25678 efopn 25813 logtayl 25815 cxpval 25819 0cxp 25821 cxpexp 25823 cxpcl 25829 cxpge0 25838 mulcxplem 25839 mulcxp 25840 cxpmul2 25844 dvsqrt 25895 dvcnsqrt 25897 cxpcn3 25901 abscxpbnd 25906 efrlim 26119 ftalem2 26223 ftalem3 26224 ftalem4 26225 ftalem5 26226 ftalem7 26228 prmorcht 26327 muinv 26342 1sgm2ppw 26348 logfacbnd3 26371 logexprlim 26373 dchrelbas2 26385 dchrmulid2 26400 dchrfi 26403 dchrinv 26409 lgsdir2 26478 lgsdir 26480 addsqnreup 26591 dchrvmasumiflem1 26649 dchrvmasumiflem2 26650 rpvmasum2 26660 log2sumbnd 26692 selberg2lem 26698 logdivbnd 26704 ax5seglem8 27304 axlowdimlem6 27315 axlowdimlem13 27322 ex-co 28802 avril1 28827 vc0 28936 vcz 28937 cnaddabloOLD 28943 cnidOLD 28944 ipasslem8 29199 siilem2 29214 hvmul0 29386 hi01 29458 norm-iii 29502 h1de2ctlem 29917 pjmuli 30051 pjneli 30085 eigre 30197 eigorth 30200 elnlfn 30290 0cnfn 30342 0lnfn 30347 lnopunilem2 30373 xrge0tsmsd 31317 qqh0 31934 qqhcn 31941 eulerpartlemgs2 32347 sgnneg 32507 breprexpnat 32614 hgt750lem2 32632 subfacp1lem6 33147 sinccvglem 33630 abs2sqle 33638 abs2sqlt 33639 tan2h 35769 poimirlem16 35793 poimirlem19 35796 poimirlem31 35808 mblfinlem2 35815 ovoliunnfl 35819 voliunnfl 35821 dvtanlem 35826 ftc1anclem5 35854 cntotbnd 35954 60lcm7e420 40018 lcmineqlem10 40046 3lexlogpow5ineq1 40062 sn-1ne2 40295 sn-it0e0 40397 addinvcom 40413 sn-0tie0 40421 fltnltalem 40499 flcidc 40999 dvconstbi 41952 expgrowth 41953 dvradcnv2 41965 binomcxplemdvbinom 41971 binomcxplemnotnn0 41974 xralrple3 42913 negcncfg 43422 ioodvbdlimc1 43474 ioodvbdlimc2 43476 itgsinexplem1 43495 stoweidlem26 43567 stoweidlem36 43577 stoweidlem55 43596 stirlinglem8 43622 fourierdlem103 43750 sqwvfoura 43769 sqwvfourb 43770 ovn0lem 44103 nn0sumshdiglemA 45965 nn0sumshdiglemB 45966 nn0sumshdiglem1 45967 sec0 46462 |
Copyright terms: Public domain | W3C validator |