![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0cn | Structured version Visualization version GIF version |
Description: Zero is a complex number. See also 0cnALT 11493. (Contributed by NM, 19-Feb-2005.) |
Ref | Expression |
---|---|
0cn | ⊢ 0 ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-i2m1 11220 | . 2 ⊢ ((i · i) + 1) = 0 | |
2 | ax-icn 11211 | . . . 4 ⊢ i ∈ ℂ | |
3 | mulcl 11236 | . . . 4 ⊢ ((i ∈ ℂ ∧ i ∈ ℂ) → (i · i) ∈ ℂ) | |
4 | 2, 2, 3 | mp2an 692 | . . 3 ⊢ (i · i) ∈ ℂ |
5 | ax-1cn 11210 | . . 3 ⊢ 1 ∈ ℂ | |
6 | addcl 11234 | . . 3 ⊢ (((i · i) ∈ ℂ ∧ 1 ∈ ℂ) → ((i · i) + 1) ∈ ℂ) | |
7 | 4, 5, 6 | mp2an 692 | . 2 ⊢ ((i · i) + 1) ∈ ℂ |
8 | 1, 7 | eqeltrri 2835 | 1 ⊢ 0 ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 (class class class)co 7430 ℂcc 11150 0cc0 11152 1c1 11153 ici 11154 + caddc 11155 · cmul 11157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-mulcl 11214 ax-i2m1 11220 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-cleq 2726 df-clel 2813 |
This theorem is referenced by: 0cnd 11251 c0ex 11252 1re 11258 00id 11433 mul02lem1 11434 mul02 11436 mul01 11437 addrid 11438 addlid 11441 negcl 11505 subid 11525 subid1 11526 neg0 11552 negid 11553 negsub 11554 subneg 11555 negneg 11556 negeq0 11560 negsubdi 11562 renegcli 11567 mulneg1 11696 msqge0 11781 ixi 11889 muleqadd 11904 diveq0 11929 div0 11952 div0OLD 11953 ofsubge0 12262 0m0e0 12383 nn0sscn 12528 elznn0 12625 ser0 14091 0exp0e1 14103 0exp 14134 sq0 14227 sqeqor 14251 binom2 14252 bcval5 14353 s1co 14868 shftval3 15111 shftidt2 15116 cjne0 15198 sqrt0 15276 abs0 15320 abs00bd 15326 abs2dif 15367 clim0 15538 climz 15581 serclim0 15609 rlimneg 15679 sumrblem 15743 fsumcvg 15744 summolem2a 15747 sumss 15756 fsumss 15757 fsumcvg2 15759 fsumsplit 15773 sumsplit 15800 fsumrelem 15839 fsumrlim 15843 fsumo1 15844 0fallfac 16069 0risefac 16070 binomfallfac 16073 fsumcube 16092 ef0 16123 eftlub 16141 sin0 16181 tan0 16183 divalglem9 16434 sadadd2lem2 16483 sadadd3 16494 bezout 16576 pcmpt2 16926 4sqlem11 16988 ramcl 17062 4001lem2 17175 odadd1 19880 cnaddablx 19900 cnaddabl 19901 cnaddid 19902 frgpnabllem1 19905 cncrng 21418 cncrngOLD 21419 cnfld0 21422 pzriprnglem5 21513 pzriprnglem6 21514 psdmplcl 22183 cnbl0 24809 cnblcld 24810 cnfldnm 24814 xrge0gsumle 24868 xrge0tsms 24869 cnheibor 25000 cnlmod 25186 csscld 25296 clsocv 25297 cnflduss 25403 cnfldcusp 25404 rrxmvallem 25451 rrxmval 25452 mbfss 25694 mbfmulc2lem 25695 0plef 25720 0pledm 25721 itg1ge0 25734 itg1addlem4 25747 itg1addlem4OLD 25748 itg2splitlem 25797 itg2addlem 25807 ibl0 25836 iblcnlem 25838 iblss2 25855 itgss3 25864 dvconst 25966 dvcnp2 25969 dvcnp2OLD 25970 dvrec 26007 dvexp3 26030 dveflem 26031 dv11cn 26054 lhop1lem 26066 plyun0 26250 plyeq0lem 26263 coeeulem 26277 coeeu 26278 coef3 26285 dgrle 26296 0dgrb 26299 coefv0 26301 coemulc 26308 coe1termlem 26311 coe1term 26312 dgr0 26316 dgrmulc 26325 dgrcolem2 26328 vieta1lem2 26367 iaa 26381 aareccl 26382 aalioulem3 26390 taylthlem2 26430 taylthlem2OLD 26431 psercn 26484 pserdvlem2 26486 abelthlem2 26490 abelthlem3 26491 abelthlem5 26493 abelthlem7 26496 abelth 26499 sin2kpi 26539 cos2kpi 26540 sinkpi 26578 efopn 26714 logtayl 26716 cxpval 26720 0cxp 26722 cxpexp 26724 cxpcl 26730 cxpge0 26739 mulcxplem 26740 mulcxp 26741 cxpmul2 26745 dvsqrt 26798 dvcnsqrt 26800 cxpcn3 26805 abscxpbnd 26810 efrlim 27026 efrlimOLD 27027 ftalem2 27131 ftalem3 27132 ftalem4 27133 ftalem5 27134 ftalem7 27136 prmorcht 27235 muinv 27250 1sgm2ppw 27258 logfacbnd3 27281 logexprlim 27283 dchrelbas2 27295 dchrmullid 27310 dchrfi 27313 dchrinv 27319 lgsdir2 27388 lgsdir 27390 addsqnreup 27501 dchrvmasumiflem1 27559 dchrvmasumiflem2 27560 rpvmasum2 27570 log2sumbnd 27602 selberg2lem 27608 logdivbnd 27614 ax5seglem8 28965 axlowdimlem6 28976 axlowdimlem13 28983 ex-co 30466 avril1 30491 vc0 30602 vcz 30603 cnaddabloOLD 30609 cnidOLD 30610 ipasslem8 30865 siilem2 30880 hvmul0 31052 hi01 31124 norm-iii 31168 h1de2ctlem 31583 pjmuli 31717 pjneli 31751 eigre 31863 eigorth 31866 elnlfn 31956 0cnfn 32008 0lnfn 32013 lnopunilem2 32039 xrge0tsmsd 33047 constrsscn 33744 qqh0 33946 qqhcn 33953 eulerpartlemgs2 34361 sgnneg 34521 breprexpnat 34627 hgt750lem2 34645 subfacp1lem6 35169 sinccvglem 35656 abs2sqle 35664 abs2sqlt 35665 tan2h 37598 poimirlem16 37622 poimirlem19 37625 poimirlem31 37637 mblfinlem2 37644 ovoliunnfl 37648 voliunnfl 37650 dvtanlem 37655 ftc1anclem5 37683 cntotbnd 37782 60lcm7e420 41991 lcmineqlem10 42019 3lexlogpow5ineq1 42035 sn-1ne2 42278 0tie0 42328 sn-it0e0 42421 addinvcom 42437 sn-0tie0 42445 fltnltalem 42648 flcidc 43158 dvconstbi 44329 expgrowth 44330 dvradcnv2 44342 binomcxplemdvbinom 44348 binomcxplemnotnn0 44351 xralrple3 45323 negcncfg 45836 ioodvbdlimc1 45888 ioodvbdlimc2 45890 itgsinexplem1 45909 stoweidlem26 45981 stoweidlem36 45991 stoweidlem55 46010 stirlinglem8 46036 fourierdlem103 46164 sqwvfoura 46183 sqwvfourb 46184 ovn0lem 46520 nn0sumshdiglemA 48468 nn0sumshdiglemB 48469 nn0sumshdiglem1 48470 sec0 48990 |
Copyright terms: Public domain | W3C validator |