| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0cn | Structured version Visualization version GIF version | ||
| Description: Zero is a complex number. See also 0cnALT 11385. (Contributed by NM, 19-Feb-2005.) |
| Ref | Expression |
|---|---|
| 0cn | ⊢ 0 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-i2m1 11112 | . 2 ⊢ ((i · i) + 1) = 0 | |
| 2 | ax-icn 11103 | . . . 4 ⊢ i ∈ ℂ | |
| 3 | mulcl 11128 | . . . 4 ⊢ ((i ∈ ℂ ∧ i ∈ ℂ) → (i · i) ∈ ℂ) | |
| 4 | 2, 2, 3 | mp2an 692 | . . 3 ⊢ (i · i) ∈ ℂ |
| 5 | ax-1cn 11102 | . . 3 ⊢ 1 ∈ ℂ | |
| 6 | addcl 11126 | . . 3 ⊢ (((i · i) ∈ ℂ ∧ 1 ∈ ℂ) → ((i · i) + 1) ∈ ℂ) | |
| 7 | 4, 5, 6 | mp2an 692 | . 2 ⊢ ((i · i) + 1) ∈ ℂ |
| 8 | 1, 7 | eqeltrri 2825 | 1 ⊢ 0 ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7369 ℂcc 11042 0cc0 11044 1c1 11045 ici 11046 + caddc 11047 · cmul 11049 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-mulcl 11106 ax-i2m1 11112 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: 0cnd 11143 c0ex 11144 1re 11150 00id 11325 mul02lem1 11326 mul02 11328 mul01 11329 addrid 11330 addlid 11333 negcl 11397 subid 11417 subid1 11418 neg0 11444 negid 11445 negsub 11446 subneg 11447 negneg 11448 negeq0 11452 negsubdi 11454 renegcli 11459 mulneg1 11590 msqge0 11675 ixi 11783 muleqadd 11798 diveq0 11823 div0 11846 div0OLD 11847 ofsubge0 12161 0m0e0 12277 nn0sscn 12423 elznn0 12520 ser0 13995 0exp0e1 14007 0exp 14038 sq0 14133 sqeqor 14157 binom2 14158 bcval5 14259 s1co 14775 shftval3 15018 shftidt2 15023 cjne0 15105 sqrt0 15183 abs0 15227 abs00bd 15233 abs2dif 15275 clim0 15448 climz 15491 serclim0 15519 rlimneg 15589 sumrblem 15653 fsumcvg 15654 summolem2a 15657 sumss 15666 fsumss 15667 fsumcvg2 15669 fsumsplit 15683 sumsplit 15710 fsumrelem 15749 fsumrlim 15753 fsumo1 15754 0fallfac 15979 0risefac 15980 binomfallfac 15983 fsumcube 16002 ef0 16033 eftlub 16053 sin0 16093 tan0 16095 divalglem9 16347 sadadd2lem2 16396 sadadd3 16407 bezout 16489 pcmpt2 16840 4sqlem11 16902 ramcl 16976 4001lem2 17088 odadd1 19754 cnaddablx 19774 cnaddabl 19775 cnaddid 19776 frgpnabllem1 19779 cncrng 21276 cncrngOLD 21277 cnfld0 21280 pzriprnglem5 21371 pzriprnglem6 21372 psdmplcl 22025 cnbl0 24637 cnblcld 24638 cnfldnm 24642 cnn0opn 24651 xrge0gsumle 24698 xrge0tsms 24699 cnheibor 24830 cnlmod 25016 csscld 25125 clsocv 25126 cnflduss 25232 cnfldcusp 25233 rrxmvallem 25280 rrxmval 25281 mbfss 25523 mbfmulc2lem 25524 0plef 25549 0pledm 25550 itg1ge0 25563 itg1addlem4 25576 itg2splitlem 25625 itg2addlem 25635 ibl0 25664 iblcnlem 25666 iblss2 25683 itgss3 25692 dvconst 25794 dvcnp2 25797 dvcnp2OLD 25798 dveflem 25859 dv11cn 25882 lhop1lem 25894 plyun0 26078 plyeq0lem 26091 coeeulem 26105 coeeu 26106 coef3 26113 dgrle 26124 0dgrb 26127 coefv0 26129 coemulc 26136 coe1termlem 26139 coe1term 26140 dgr0 26144 dgrmulc 26153 dgrcolem2 26156 vieta1lem2 26195 iaa 26209 aareccl 26210 aalioulem3 26218 taylthlem2 26258 taylthlem2OLD 26259 psercn 26312 pserdvlem2 26314 abelthlem2 26318 abelthlem3 26319 abelthlem5 26321 abelthlem7 26324 abelth 26327 sin2kpi 26368 cos2kpi 26369 sinkpi 26407 efopn 26543 logtayl 26545 cxpval 26549 0cxp 26551 cxpexp 26553 cxpcl 26559 cxpge0 26568 mulcxplem 26569 mulcxp 26570 cxpmul2 26574 dvsqrt 26627 dvcnsqrt 26629 cxpcn3 26634 abscxpbnd 26639 efrlim 26855 efrlimOLD 26856 ftalem2 26960 ftalem3 26961 ftalem4 26962 ftalem5 26963 ftalem7 26965 prmorcht 27064 muinv 27079 1sgm2ppw 27087 logfacbnd3 27110 logexprlim 27112 dchrelbas2 27124 dchrmullid 27139 dchrfi 27142 dchrinv 27148 lgsdir2 27217 lgsdir 27219 addsqnreup 27330 dchrvmasumiflem1 27388 dchrvmasumiflem2 27389 rpvmasum2 27399 log2sumbnd 27431 selberg2lem 27437 logdivbnd 27443 ax5seglem8 28839 axlowdimlem6 28850 axlowdimlem13 28857 ex-co 30340 avril1 30365 vc0 30476 vcz 30477 cnaddabloOLD 30483 cnidOLD 30484 ipasslem8 30739 siilem2 30754 hvmul0 30926 hi01 30998 norm-iii 31042 h1de2ctlem 31457 pjmuli 31591 pjneli 31625 eigre 31737 eigorth 31740 elnlfn 31830 0cnfn 31882 0lnfn 31887 lnopunilem2 31913 sgnneg 32731 xrge0tsmsd 32975 constrsscn 33703 qqh0 33947 qqhcn 33954 eulerpartlemgs2 34344 breprexpnat 34598 hgt750lem2 34616 subfacp1lem6 35145 sinccvglem 35632 abs2sqle 35640 abs2sqlt 35641 tan2h 37579 poimirlem16 37603 poimirlem19 37606 poimirlem31 37618 mblfinlem2 37625 ovoliunnfl 37629 voliunnfl 37631 ftc1anclem5 37664 cntotbnd 37763 60lcm7e420 41971 lcmineqlem10 41999 3lexlogpow5ineq1 42015 sn-1ne2 42226 0tie0 42276 sn-it0e0 42377 addinvcom 42393 sn-0tie0 42412 fltnltalem 42623 flcidc 43132 dvconstbi 44296 expgrowth 44297 dvradcnv2 44309 binomcxplemdvbinom 44315 binomcxplemnotnn0 44318 xralrple3 45343 negcncfg 45852 ioodvbdlimc1 45904 ioodvbdlimc2 45906 itgsinexplem1 45925 stoweidlem26 45997 stoweidlem36 46007 stoweidlem55 46026 stirlinglem8 46052 fourierdlem103 46180 sqwvfoura 46199 sqwvfourb 46200 ovn0lem 46536 nn0sumshdiglemA 48581 nn0sumshdiglemB 48582 nn0sumshdiglem1 48583 sec0 49722 |
| Copyright terms: Public domain | W3C validator |