| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0cn | Structured version Visualization version GIF version | ||
| Description: Zero is a complex number. See also 0cnALT 11416. (Contributed by NM, 19-Feb-2005.) |
| Ref | Expression |
|---|---|
| 0cn | ⊢ 0 ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-i2m1 11143 | . 2 ⊢ ((i · i) + 1) = 0 | |
| 2 | ax-icn 11134 | . . . 4 ⊢ i ∈ ℂ | |
| 3 | mulcl 11159 | . . . 4 ⊢ ((i ∈ ℂ ∧ i ∈ ℂ) → (i · i) ∈ ℂ) | |
| 4 | 2, 2, 3 | mp2an 692 | . . 3 ⊢ (i · i) ∈ ℂ |
| 5 | ax-1cn 11133 | . . 3 ⊢ 1 ∈ ℂ | |
| 6 | addcl 11157 | . . 3 ⊢ (((i · i) ∈ ℂ ∧ 1 ∈ ℂ) → ((i · i) + 1) ∈ ℂ) | |
| 7 | 4, 5, 6 | mp2an 692 | . 2 ⊢ ((i · i) + 1) ∈ ℂ |
| 8 | 1, 7 | eqeltrri 2826 | 1 ⊢ 0 ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7390 ℂcc 11073 0cc0 11075 1c1 11076 ici 11077 + caddc 11078 · cmul 11080 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-mulcl 11137 ax-i2m1 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-clel 2804 |
| This theorem is referenced by: 0cnd 11174 c0ex 11175 1re 11181 00id 11356 mul02lem1 11357 mul02 11359 mul01 11360 addrid 11361 addlid 11364 negcl 11428 subid 11448 subid1 11449 neg0 11475 negid 11476 negsub 11477 subneg 11478 negneg 11479 negeq0 11483 negsubdi 11485 renegcli 11490 mulneg1 11621 msqge0 11706 ixi 11814 muleqadd 11829 diveq0 11854 div0 11877 div0OLD 11878 ofsubge0 12192 0m0e0 12308 nn0sscn 12454 elznn0 12551 ser0 14026 0exp0e1 14038 0exp 14069 sq0 14164 sqeqor 14188 binom2 14189 bcval5 14290 s1co 14806 shftval3 15049 shftidt2 15054 cjne0 15136 sqrt0 15214 abs0 15258 abs00bd 15264 abs2dif 15306 clim0 15479 climz 15522 serclim0 15550 rlimneg 15620 sumrblem 15684 fsumcvg 15685 summolem2a 15688 sumss 15697 fsumss 15698 fsumcvg2 15700 fsumsplit 15714 sumsplit 15741 fsumrelem 15780 fsumrlim 15784 fsumo1 15785 0fallfac 16010 0risefac 16011 binomfallfac 16014 fsumcube 16033 ef0 16064 eftlub 16084 sin0 16124 tan0 16126 divalglem9 16378 sadadd2lem2 16427 sadadd3 16438 bezout 16520 pcmpt2 16871 4sqlem11 16933 ramcl 17007 4001lem2 17119 odadd1 19785 cnaddablx 19805 cnaddabl 19806 cnaddid 19807 frgpnabllem1 19810 cncrng 21307 cncrngOLD 21308 cnfld0 21311 pzriprnglem5 21402 pzriprnglem6 21403 psdmplcl 22056 cnbl0 24668 cnblcld 24669 cnfldnm 24673 cnn0opn 24682 xrge0gsumle 24729 xrge0tsms 24730 cnheibor 24861 cnlmod 25047 csscld 25156 clsocv 25157 cnflduss 25263 cnfldcusp 25264 rrxmvallem 25311 rrxmval 25312 mbfss 25554 mbfmulc2lem 25555 0plef 25580 0pledm 25581 itg1ge0 25594 itg1addlem4 25607 itg2splitlem 25656 itg2addlem 25666 ibl0 25695 iblcnlem 25697 iblss2 25714 itgss3 25723 dvconst 25825 dvcnp2 25828 dvcnp2OLD 25829 dveflem 25890 dv11cn 25913 lhop1lem 25925 plyun0 26109 plyeq0lem 26122 coeeulem 26136 coeeu 26137 coef3 26144 dgrle 26155 0dgrb 26158 coefv0 26160 coemulc 26167 coe1termlem 26170 coe1term 26171 dgr0 26175 dgrmulc 26184 dgrcolem2 26187 vieta1lem2 26226 iaa 26240 aareccl 26241 aalioulem3 26249 taylthlem2 26289 taylthlem2OLD 26290 psercn 26343 pserdvlem2 26345 abelthlem2 26349 abelthlem3 26350 abelthlem5 26352 abelthlem7 26355 abelth 26358 sin2kpi 26399 cos2kpi 26400 sinkpi 26438 efopn 26574 logtayl 26576 cxpval 26580 0cxp 26582 cxpexp 26584 cxpcl 26590 cxpge0 26599 mulcxplem 26600 mulcxp 26601 cxpmul2 26605 dvsqrt 26658 dvcnsqrt 26660 cxpcn3 26665 abscxpbnd 26670 efrlim 26886 efrlimOLD 26887 ftalem2 26991 ftalem3 26992 ftalem4 26993 ftalem5 26994 ftalem7 26996 prmorcht 27095 muinv 27110 1sgm2ppw 27118 logfacbnd3 27141 logexprlim 27143 dchrelbas2 27155 dchrmullid 27170 dchrfi 27173 dchrinv 27179 lgsdir2 27248 lgsdir 27250 addsqnreup 27361 dchrvmasumiflem1 27419 dchrvmasumiflem2 27420 rpvmasum2 27430 log2sumbnd 27462 selberg2lem 27468 logdivbnd 27474 ax5seglem8 28870 axlowdimlem6 28881 axlowdimlem13 28888 ex-co 30374 avril1 30399 vc0 30510 vcz 30511 cnaddabloOLD 30517 cnidOLD 30518 ipasslem8 30773 siilem2 30788 hvmul0 30960 hi01 31032 norm-iii 31076 h1de2ctlem 31491 pjmuli 31625 pjneli 31659 eigre 31771 eigorth 31774 elnlfn 31864 0cnfn 31916 0lnfn 31921 lnopunilem2 31947 sgnneg 32765 xrge0tsmsd 33009 constrsscn 33737 qqh0 33981 qqhcn 33988 eulerpartlemgs2 34378 breprexpnat 34632 hgt750lem2 34650 subfacp1lem6 35179 sinccvglem 35666 abs2sqle 35674 abs2sqlt 35675 tan2h 37613 poimirlem16 37637 poimirlem19 37640 poimirlem31 37652 mblfinlem2 37659 ovoliunnfl 37663 voliunnfl 37665 ftc1anclem5 37698 cntotbnd 37797 60lcm7e420 42005 lcmineqlem10 42033 3lexlogpow5ineq1 42049 sn-1ne2 42260 0tie0 42310 sn-it0e0 42411 addinvcom 42427 sn-0tie0 42446 fltnltalem 42657 flcidc 43166 dvconstbi 44330 expgrowth 44331 dvradcnv2 44343 binomcxplemdvbinom 44349 binomcxplemnotnn0 44352 xralrple3 45377 negcncfg 45886 ioodvbdlimc1 45938 ioodvbdlimc2 45940 itgsinexplem1 45959 stoweidlem26 46031 stoweidlem36 46041 stoweidlem55 46060 stirlinglem8 46086 fourierdlem103 46214 sqwvfoura 46233 sqwvfourb 46234 ovn0lem 46570 nn0sumshdiglemA 48612 nn0sumshdiglemB 48613 nn0sumshdiglem1 48614 sec0 49753 |
| Copyright terms: Public domain | W3C validator |