Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-1ne2 Structured version   Visualization version   GIF version

Theorem sn-1ne2 39466
Description: A proof of 1ne2 11833 without using ax-mulcom 10590, ax-mulass 10592, ax-pre-mulgt0 10603. Based on mul02lem2 10806. (Contributed by SN, 13-Dec-2023.)
Assertion
Ref Expression
sn-1ne2 1 ≠ 2

Proof of Theorem sn-1ne2
StepHypRef Expression
1 0ne1 11696 . . . 4 0 ≠ 1
2 ax-icn 10585 . . . . . . . . . . . 12 i ∈ ℂ
32, 2mulcli 10637 . . . . . . . . . . 11 (i · i) ∈ ℂ
4 ax-1cn 10584 . . . . . . . . . . 11 1 ∈ ℂ
53, 4, 4addassi 10640 . . . . . . . . . 10 (((i · i) + 1) + 1) = ((i · i) + (1 + 1))
65a1i 11 . . . . . . . . 9 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → (((i · i) + 1) + 1) = ((i · i) + (1 + 1)))
7 simpr 488 . . . . . . . . . 10 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → 1 = (1 + 1))
87oveq2d 7151 . . . . . . . . 9 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → ((i · i) + 1) = ((i · i) + (1 + 1)))
9 ax-i2m1 10594 . . . . . . . . . 10 ((i · i) + 1) = 0
109a1i 11 . . . . . . . . 9 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → ((i · i) + 1) = 0)
116, 8, 103eqtr2rd 2840 . . . . . . . 8 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → 0 = (((i · i) + 1) + 1))
12 simpl 486 . . . . . . . 8 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → 0 = (0 + 0))
1310oveq1d 7150 . . . . . . . 8 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → (((i · i) + 1) + 1) = (0 + 1))
1411, 12, 133eqtr3d 2841 . . . . . . 7 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → (0 + 0) = (0 + 1))
15 0red 10633 . . . . . . . 8 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → 0 ∈ ℝ)
16 1red 10631 . . . . . . . 8 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → 1 ∈ ℝ)
17 readdcan 10803 . . . . . . . 8 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 0 ∈ ℝ) → ((0 + 0) = (0 + 1) ↔ 0 = 1))
1815, 16, 15, 17syl3anc 1368 . . . . . . 7 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → ((0 + 0) = (0 + 1) ↔ 0 = 1))
1914, 18mpbid 235 . . . . . 6 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → 0 = 1)
2019ex 416 . . . . 5 (0 = (0 + 0) → (1 = (1 + 1) → 0 = 1))
2120necon3d 3008 . . . 4 (0 = (0 + 0) → (0 ≠ 1 → 1 ≠ (1 + 1)))
221, 21mpi 20 . . 3 (0 = (0 + 0) → 1 ≠ (1 + 1))
23 oveq2 7143 . . . . 5 (1 = (1 + 1) → (0 · 1) = (0 · (1 + 1)))
24 0re 10632 . . . . . 6 0 ∈ ℝ
25 ax-1rid 10596 . . . . . 6 (0 ∈ ℝ → (0 · 1) = 0)
2624, 25ax-mp 5 . . . . 5 (0 · 1) = 0
27 0cn 10622 . . . . . . 7 0 ∈ ℂ
2827, 4, 4adddii 10642 . . . . . 6 (0 · (1 + 1)) = ((0 · 1) + (0 · 1))
2926, 26oveq12i 7147 . . . . . 6 ((0 · 1) + (0 · 1)) = (0 + 0)
3028, 29eqtri 2821 . . . . 5 (0 · (1 + 1)) = (0 + 0)
3123, 26, 303eqtr3g 2856 . . . 4 (1 = (1 + 1) → 0 = (0 + 0))
3231necon3i 3019 . . 3 (0 ≠ (0 + 0) → 1 ≠ (1 + 1))
3322, 32pm2.61ine 3070 . 2 1 ≠ (1 + 1)
34 df-2 11688 . 2 2 = (1 + 1)
3533, 34neeqtrri 3060 1 1 ≠ 2
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  (class class class)co 7135  cr 10525  0cc0 10526  1c1 10527  ici 10528   + caddc 10529   · cmul 10531  2c2 11680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-addass 10591  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-ltxr 10669  df-2 11688
This theorem is referenced by:  remul02  39543  sn-0ne2  39544  remul01  39545
  Copyright terms: Public domain W3C validator