Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-1ne2 Structured version   Visualization version   GIF version

Theorem sn-1ne2 41179
Description: A proof of 1ne2 12420 without using ax-mulcom 11174, ax-mulass 11176, ax-pre-mulgt0 11187. Based on mul02lem2 11391. (Contributed by SN, 13-Dec-2023.)
Assertion
Ref Expression
sn-1ne2 1 ≠ 2

Proof of Theorem sn-1ne2
StepHypRef Expression
1 0ne1 12283 . . . 4 0 ≠ 1
2 ax-icn 11169 . . . . . . . . . . . 12 i ∈ ℂ
32, 2mulcli 11221 . . . . . . . . . . 11 (i · i) ∈ ℂ
4 ax-1cn 11168 . . . . . . . . . . 11 1 ∈ ℂ
53, 4, 4addassi 11224 . . . . . . . . . 10 (((i · i) + 1) + 1) = ((i · i) + (1 + 1))
65a1i 11 . . . . . . . . 9 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → (((i · i) + 1) + 1) = ((i · i) + (1 + 1)))
7 simpr 486 . . . . . . . . . 10 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → 1 = (1 + 1))
87oveq2d 7425 . . . . . . . . 9 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → ((i · i) + 1) = ((i · i) + (1 + 1)))
9 ax-i2m1 11178 . . . . . . . . . 10 ((i · i) + 1) = 0
109a1i 11 . . . . . . . . 9 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → ((i · i) + 1) = 0)
116, 8, 103eqtr2rd 2780 . . . . . . . 8 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → 0 = (((i · i) + 1) + 1))
12 simpl 484 . . . . . . . 8 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → 0 = (0 + 0))
1310oveq1d 7424 . . . . . . . 8 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → (((i · i) + 1) + 1) = (0 + 1))
1411, 12, 133eqtr3d 2781 . . . . . . 7 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → (0 + 0) = (0 + 1))
15 0red 11217 . . . . . . . 8 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → 0 ∈ ℝ)
16 1red 11215 . . . . . . . 8 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → 1 ∈ ℝ)
17 readdcan 11388 . . . . . . . 8 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 0 ∈ ℝ) → ((0 + 0) = (0 + 1) ↔ 0 = 1))
1815, 16, 15, 17syl3anc 1372 . . . . . . 7 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → ((0 + 0) = (0 + 1) ↔ 0 = 1))
1914, 18mpbid 231 . . . . . 6 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → 0 = 1)
2019ex 414 . . . . 5 (0 = (0 + 0) → (1 = (1 + 1) → 0 = 1))
2120necon3d 2962 . . . 4 (0 = (0 + 0) → (0 ≠ 1 → 1 ≠ (1 + 1)))
221, 21mpi 20 . . 3 (0 = (0 + 0) → 1 ≠ (1 + 1))
23 oveq2 7417 . . . . 5 (1 = (1 + 1) → (0 · 1) = (0 · (1 + 1)))
24 0re 11216 . . . . . 6 0 ∈ ℝ
25 ax-1rid 11180 . . . . . 6 (0 ∈ ℝ → (0 · 1) = 0)
2624, 25ax-mp 5 . . . . 5 (0 · 1) = 0
27 0cn 11206 . . . . . . 7 0 ∈ ℂ
2827, 4, 4adddii 11226 . . . . . 6 (0 · (1 + 1)) = ((0 · 1) + (0 · 1))
2926, 26oveq12i 7421 . . . . . 6 ((0 · 1) + (0 · 1)) = (0 + 0)
3028, 29eqtri 2761 . . . . 5 (0 · (1 + 1)) = (0 + 0)
3123, 26, 303eqtr3g 2796 . . . 4 (1 = (1 + 1) → 0 = (0 + 0))
3231necon3i 2974 . . 3 (0 ≠ (0 + 0) → 1 ≠ (1 + 1))
3322, 32pm2.61ine 3026 . 2 1 ≠ (1 + 1)
34 df-2 12275 . 2 2 = (1 + 1)
3533, 34neeqtrri 3015 1 1 ≠ 2
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397   = wceq 1542  wcel 2107  wne 2941  (class class class)co 7409  cr 11109  0cc0 11110  1c1 11111  ici 11112   + caddc 11113   · cmul 11115  2c2 12267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-addass 11175  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-po 5589  df-so 5590  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-ltxr 11253  df-2 12275
This theorem is referenced by:  remul02  41278  sn-0ne2  41279  remul01  41280  flt0  41379
  Copyright terms: Public domain W3C validator