Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-1ne2 Structured version   Visualization version   GIF version

Theorem sn-1ne2 42245
Description: A proof of 1ne2 12457 without using ax-mulcom 11202, ax-mulass 11204, ax-pre-mulgt0 11215. Based on mul02lem2 11421. (Contributed by SN, 13-Dec-2023.)
Assertion
Ref Expression
sn-1ne2 1 ≠ 2

Proof of Theorem sn-1ne2
StepHypRef Expression
1 0ne1 12320 . . . 4 0 ≠ 1
2 ax-icn 11197 . . . . . . . . . . . 12 i ∈ ℂ
32, 2mulcli 11251 . . . . . . . . . . 11 (i · i) ∈ ℂ
4 ax-1cn 11196 . . . . . . . . . . 11 1 ∈ ℂ
53, 4, 4addassi 11254 . . . . . . . . . 10 (((i · i) + 1) + 1) = ((i · i) + (1 + 1))
65a1i 11 . . . . . . . . 9 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → (((i · i) + 1) + 1) = ((i · i) + (1 + 1)))
7 simpr 484 . . . . . . . . . 10 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → 1 = (1 + 1))
87oveq2d 7430 . . . . . . . . 9 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → ((i · i) + 1) = ((i · i) + (1 + 1)))
9 ax-i2m1 11206 . . . . . . . . . 10 ((i · i) + 1) = 0
109a1i 11 . . . . . . . . 9 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → ((i · i) + 1) = 0)
116, 8, 103eqtr2rd 2776 . . . . . . . 8 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → 0 = (((i · i) + 1) + 1))
12 simpl 482 . . . . . . . 8 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → 0 = (0 + 0))
1310oveq1d 7429 . . . . . . . 8 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → (((i · i) + 1) + 1) = (0 + 1))
1411, 12, 133eqtr3d 2777 . . . . . . 7 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → (0 + 0) = (0 + 1))
15 0red 11247 . . . . . . . 8 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → 0 ∈ ℝ)
16 1red 11245 . . . . . . . 8 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → 1 ∈ ℝ)
17 readdcan 11418 . . . . . . . 8 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 0 ∈ ℝ) → ((0 + 0) = (0 + 1) ↔ 0 = 1))
1815, 16, 15, 17syl3anc 1372 . . . . . . 7 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → ((0 + 0) = (0 + 1) ↔ 0 = 1))
1914, 18mpbid 232 . . . . . 6 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → 0 = 1)
2019ex 412 . . . . 5 (0 = (0 + 0) → (1 = (1 + 1) → 0 = 1))
2120necon3d 2952 . . . 4 (0 = (0 + 0) → (0 ≠ 1 → 1 ≠ (1 + 1)))
221, 21mpi 20 . . 3 (0 = (0 + 0) → 1 ≠ (1 + 1))
23 oveq2 7422 . . . . 5 (1 = (1 + 1) → (0 · 1) = (0 · (1 + 1)))
24 0re 11246 . . . . . 6 0 ∈ ℝ
25 ax-1rid 11208 . . . . . 6 (0 ∈ ℝ → (0 · 1) = 0)
2624, 25ax-mp 5 . . . . 5 (0 · 1) = 0
27 0cn 11236 . . . . . . 7 0 ∈ ℂ
2827, 4, 4adddii 11256 . . . . . 6 (0 · (1 + 1)) = ((0 · 1) + (0 · 1))
2926, 26oveq12i 7426 . . . . . 6 ((0 · 1) + (0 · 1)) = (0 + 0)
3028, 29eqtri 2757 . . . . 5 (0 · (1 + 1)) = (0 + 0)
3123, 26, 303eqtr3g 2792 . . . 4 (1 = (1 + 1) → 0 = (0 + 0))
3231necon3i 2963 . . 3 (0 ≠ (0 + 0) → 1 ≠ (1 + 1))
3322, 32pm2.61ine 3014 . 2 1 ≠ (1 + 1)
34 df-2 12312 . 2 2 = (1 + 1)
3533, 34neeqtrri 3004 1 1 ≠ 2
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2931  (class class class)co 7414  cr 11137  0cc0 11138  1c1 11139  ici 11140   + caddc 11141   · cmul 11143  2c2 12304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-addass 11203  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-mpt 5208  df-id 5560  df-po 5574  df-so 5575  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-er 8728  df-en 8969  df-dom 8970  df-sdom 8971  df-pnf 11280  df-mnf 11281  df-ltxr 11283  df-2 12312
This theorem is referenced by:  remul02  42380  sn-0ne2  42381  remul01  42382  flt0  42592
  Copyright terms: Public domain W3C validator