Proof of Theorem sn-1ne2
| Step | Hyp | Ref
| Expression |
| 1 | | 0ne1 12320 |
. . . 4
⊢ 0 ≠
1 |
| 2 | | ax-icn 11197 |
. . . . . . . . . . . 12
⊢ i ∈
ℂ |
| 3 | 2, 2 | mulcli 11251 |
. . . . . . . . . . 11
⊢ (i
· i) ∈ ℂ |
| 4 | | ax-1cn 11196 |
. . . . . . . . . . 11
⊢ 1 ∈
ℂ |
| 5 | 3, 4, 4 | addassi 11254 |
. . . . . . . . . 10
⊢ (((i
· i) + 1) + 1) = ((i · i) + (1 + 1)) |
| 6 | 5 | a1i 11 |
. . . . . . . . 9
⊢ ((0 = (0
+ 0) ∧ 1 = (1 + 1)) → (((i · i) + 1) + 1) = ((i · i) +
(1 + 1))) |
| 7 | | simpr 484 |
. . . . . . . . . 10
⊢ ((0 = (0
+ 0) ∧ 1 = (1 + 1)) → 1 = (1 + 1)) |
| 8 | 7 | oveq2d 7430 |
. . . . . . . . 9
⊢ ((0 = (0
+ 0) ∧ 1 = (1 + 1)) → ((i · i) + 1) = ((i · i) + (1 +
1))) |
| 9 | | ax-i2m1 11206 |
. . . . . . . . . 10
⊢ ((i
· i) + 1) = 0 |
| 10 | 9 | a1i 11 |
. . . . . . . . 9
⊢ ((0 = (0
+ 0) ∧ 1 = (1 + 1)) → ((i · i) + 1) = 0) |
| 11 | 6, 8, 10 | 3eqtr2rd 2776 |
. . . . . . . 8
⊢ ((0 = (0
+ 0) ∧ 1 = (1 + 1)) → 0 = (((i · i) + 1) + 1)) |
| 12 | | simpl 482 |
. . . . . . . 8
⊢ ((0 = (0
+ 0) ∧ 1 = (1 + 1)) → 0 = (0 + 0)) |
| 13 | 10 | oveq1d 7429 |
. . . . . . . 8
⊢ ((0 = (0
+ 0) ∧ 1 = (1 + 1)) → (((i · i) + 1) + 1) = (0 +
1)) |
| 14 | 11, 12, 13 | 3eqtr3d 2777 |
. . . . . . 7
⊢ ((0 = (0
+ 0) ∧ 1 = (1 + 1)) → (0 + 0) = (0 + 1)) |
| 15 | | 0red 11247 |
. . . . . . . 8
⊢ ((0 = (0
+ 0) ∧ 1 = (1 + 1)) → 0 ∈ ℝ) |
| 16 | | 1red 11245 |
. . . . . . . 8
⊢ ((0 = (0
+ 0) ∧ 1 = (1 + 1)) → 1 ∈ ℝ) |
| 17 | | readdcan 11418 |
. . . . . . . 8
⊢ ((0
∈ ℝ ∧ 1 ∈ ℝ ∧ 0 ∈ ℝ) → ((0 + 0) =
(0 + 1) ↔ 0 = 1)) |
| 18 | 15, 16, 15, 17 | syl3anc 1372 |
. . . . . . 7
⊢ ((0 = (0
+ 0) ∧ 1 = (1 + 1)) → ((0 + 0) = (0 + 1) ↔ 0 =
1)) |
| 19 | 14, 18 | mpbid 232 |
. . . . . 6
⊢ ((0 = (0
+ 0) ∧ 1 = (1 + 1)) → 0 = 1) |
| 20 | 19 | ex 412 |
. . . . 5
⊢ (0 = (0 +
0) → (1 = (1 + 1) → 0 = 1)) |
| 21 | 20 | necon3d 2952 |
. . . 4
⊢ (0 = (0 +
0) → (0 ≠ 1 → 1 ≠ (1 + 1))) |
| 22 | 1, 21 | mpi 20 |
. . 3
⊢ (0 = (0 +
0) → 1 ≠ (1 + 1)) |
| 23 | | oveq2 7422 |
. . . . 5
⊢ (1 = (1 +
1) → (0 · 1) = (0 · (1 + 1))) |
| 24 | | 0re 11246 |
. . . . . 6
⊢ 0 ∈
ℝ |
| 25 | | ax-1rid 11208 |
. . . . . 6
⊢ (0 ∈
ℝ → (0 · 1) = 0) |
| 26 | 24, 25 | ax-mp 5 |
. . . . 5
⊢ (0
· 1) = 0 |
| 27 | | 0cn 11236 |
. . . . . . 7
⊢ 0 ∈
ℂ |
| 28 | 27, 4, 4 | adddii 11256 |
. . . . . 6
⊢ (0
· (1 + 1)) = ((0 · 1) + (0 · 1)) |
| 29 | 26, 26 | oveq12i 7426 |
. . . . . 6
⊢ ((0
· 1) + (0 · 1)) = (0 + 0) |
| 30 | 28, 29 | eqtri 2757 |
. . . . 5
⊢ (0
· (1 + 1)) = (0 + 0) |
| 31 | 23, 26, 30 | 3eqtr3g 2792 |
. . . 4
⊢ (1 = (1 +
1) → 0 = (0 + 0)) |
| 32 | 31 | necon3i 2963 |
. . 3
⊢ (0 ≠
(0 + 0) → 1 ≠ (1 + 1)) |
| 33 | 22, 32 | pm2.61ine 3014 |
. 2
⊢ 1 ≠ (1
+ 1) |
| 34 | | df-2 12312 |
. 2
⊢ 2 = (1 +
1) |
| 35 | 33, 34 | neeqtrri 3004 |
1
⊢ 1 ≠
2 |