Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-1ne2 Structured version   Visualization version   GIF version

Theorem sn-1ne2 42253
Description: A proof of 1ne2 12389 without using ax-mulcom 11132, ax-mulass 11134, ax-pre-mulgt0 11145. Based on mul02lem2 11351. (Contributed by SN, 13-Dec-2023.)
Assertion
Ref Expression
sn-1ne2 1 ≠ 2

Proof of Theorem sn-1ne2
StepHypRef Expression
1 0ne1 12257 . . . 4 0 ≠ 1
2 ax-icn 11127 . . . . . . . . . . . 12 i ∈ ℂ
32, 2mulcli 11181 . . . . . . . . . . 11 (i · i) ∈ ℂ
4 ax-1cn 11126 . . . . . . . . . . 11 1 ∈ ℂ
53, 4, 4addassi 11184 . . . . . . . . . 10 (((i · i) + 1) + 1) = ((i · i) + (1 + 1))
65a1i 11 . . . . . . . . 9 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → (((i · i) + 1) + 1) = ((i · i) + (1 + 1)))
7 simpr 484 . . . . . . . . . 10 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → 1 = (1 + 1))
87oveq2d 7403 . . . . . . . . 9 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → ((i · i) + 1) = ((i · i) + (1 + 1)))
9 ax-i2m1 11136 . . . . . . . . . 10 ((i · i) + 1) = 0
109a1i 11 . . . . . . . . 9 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → ((i · i) + 1) = 0)
116, 8, 103eqtr2rd 2771 . . . . . . . 8 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → 0 = (((i · i) + 1) + 1))
12 simpl 482 . . . . . . . 8 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → 0 = (0 + 0))
1310oveq1d 7402 . . . . . . . 8 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → (((i · i) + 1) + 1) = (0 + 1))
1411, 12, 133eqtr3d 2772 . . . . . . 7 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → (0 + 0) = (0 + 1))
15 0red 11177 . . . . . . . 8 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → 0 ∈ ℝ)
16 1red 11175 . . . . . . . 8 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → 1 ∈ ℝ)
17 readdcan 11348 . . . . . . . 8 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 0 ∈ ℝ) → ((0 + 0) = (0 + 1) ↔ 0 = 1))
1815, 16, 15, 17syl3anc 1373 . . . . . . 7 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → ((0 + 0) = (0 + 1) ↔ 0 = 1))
1914, 18mpbid 232 . . . . . 6 ((0 = (0 + 0) ∧ 1 = (1 + 1)) → 0 = 1)
2019ex 412 . . . . 5 (0 = (0 + 0) → (1 = (1 + 1) → 0 = 1))
2120necon3d 2946 . . . 4 (0 = (0 + 0) → (0 ≠ 1 → 1 ≠ (1 + 1)))
221, 21mpi 20 . . 3 (0 = (0 + 0) → 1 ≠ (1 + 1))
23 oveq2 7395 . . . . 5 (1 = (1 + 1) → (0 · 1) = (0 · (1 + 1)))
24 0re 11176 . . . . . 6 0 ∈ ℝ
25 ax-1rid 11138 . . . . . 6 (0 ∈ ℝ → (0 · 1) = 0)
2624, 25ax-mp 5 . . . . 5 (0 · 1) = 0
27 0cn 11166 . . . . . . 7 0 ∈ ℂ
2827, 4, 4adddii 11186 . . . . . 6 (0 · (1 + 1)) = ((0 · 1) + (0 · 1))
2926, 26oveq12i 7399 . . . . . 6 ((0 · 1) + (0 · 1)) = (0 + 0)
3028, 29eqtri 2752 . . . . 5 (0 · (1 + 1)) = (0 + 0)
3123, 26, 303eqtr3g 2787 . . . 4 (1 = (1 + 1) → 0 = (0 + 0))
3231necon3i 2957 . . 3 (0 ≠ (0 + 0) → 1 ≠ (1 + 1))
3322, 32pm2.61ine 3008 . 2 1 ≠ (1 + 1)
34 df-2 12249 . 2 2 = (1 + 1)
3533, 34neeqtrri 2998 1 1 ≠ 2
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  (class class class)co 7387  cr 11067  0cc0 11068  1c1 11069  ici 11070   + caddc 11071   · cmul 11073  2c2 12241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-addass 11133  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-ltxr 11213  df-2 12249
This theorem is referenced by:  remul02  42393  sn-0ne2  42394  remul01  42395  flt0  42625
  Copyright terms: Public domain W3C validator