![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > c0exALT | Structured version Visualization version GIF version |
Description: Alternate proof of c0ex 10357 using more set theory axioms but fewer complex number axioms (add ax-10 2192, ax-11 2207, ax-13 2389, ax-nul 5015, and remove ax-1cn 10317, ax-icn 10318, ax-addcl 10319, and ax-mulcl 10321). (Contributed by Steven Nguyen, 4-Dec-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
c0exALT | ⊢ 0 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-i2m1 10327 | . . 3 ⊢ ((i · i) + 1) = 0 | |
2 | 1 | eqcomi 2834 | . 2 ⊢ 0 = ((i · i) + 1) |
3 | 2 | ovexi 6943 | 1 ⊢ 0 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2164 Vcvv 3414 (class class class)co 6910 0cc0 10259 1c1 10260 ici 10261 + caddc 10262 · cmul 10264 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-nul 5015 ax-i2m1 10327 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-sn 4400 df-pr 4402 df-uni 4661 df-iota 6090 df-fv 6135 df-ov 6913 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |