Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > c0exALT | Structured version Visualization version GIF version |
Description: Alternate proof of c0ex 10969 using more set theory axioms but fewer complex number axioms (add ax-10 2137, ax-11 2154, ax-13 2372, ax-nul 5230, and remove ax-1cn 10929, ax-icn 10930, ax-addcl 10931, and ax-mulcl 10933). (Contributed by Steven Nguyen, 4-Dec-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
c0exALT | ⊢ 0 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-i2m1 10939 | . . 3 ⊢ ((i · i) + 1) = 0 | |
2 | 1 | eqcomi 2747 | . 2 ⊢ 0 = ((i · i) + 1) |
3 | 2 | ovexi 7309 | 1 ⊢ 0 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3432 (class class class)co 7275 0cc0 10871 1c1 10872 ici 10873 + caddc 10874 · cmul 10876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-nul 5230 ax-i2m1 10939 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-sn 4562 df-pr 4564 df-uni 4840 df-iota 6391 df-fv 6441 df-ov 7278 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |