| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > c0exALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of c0ex 11128 using more set theory axioms but fewer complex number axioms (add ax-10 2142, ax-11 2158, ax-13 2370, ax-nul 5248, and remove ax-1cn 11086, ax-icn 11087, ax-addcl 11088, and ax-mulcl 11090). (Contributed by Steven Nguyen, 4-Dec-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| c0exALT | ⊢ 0 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-i2m1 11096 | . . 3 ⊢ ((i · i) + 1) = 0 | |
| 2 | 1 | eqcomi 2738 | . 2 ⊢ 0 = ((i · i) + 1) |
| 3 | 2 | ovexi 7387 | 1 ⊢ 0 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3438 (class class class)co 7353 0cc0 11028 1c1 11029 ici 11030 + caddc 11031 · cmul 11033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-nul 5248 ax-i2m1 11096 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-sn 4580 df-pr 4582 df-uni 4862 df-iota 6442 df-fv 6494 df-ov 7356 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |