![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > c0exALT | Structured version Visualization version GIF version |
Description: Alternate proof of c0ex 11278 using more set theory axioms but fewer complex number axioms (add ax-10 2141, ax-11 2158, ax-13 2380, ax-nul 5324, and remove ax-1cn 11236, ax-icn 11237, ax-addcl 11238, and ax-mulcl 11240). (Contributed by Steven Nguyen, 4-Dec-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
c0exALT | ⊢ 0 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-i2m1 11246 | . . 3 ⊢ ((i · i) + 1) = 0 | |
2 | 1 | eqcomi 2749 | . 2 ⊢ 0 = ((i · i) + 1) |
3 | 2 | ovexi 7477 | 1 ⊢ 0 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3488 (class class class)co 7443 0cc0 11178 1c1 11179 ici 11180 + caddc 11181 · cmul 11183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 ax-i2m1 11246 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-sn 4649 df-pr 4651 df-uni 4932 df-iota 6520 df-fv 6576 df-ov 7446 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |