![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > c0exALT | Structured version Visualization version GIF version |
Description: Alternate proof of c0ex 11213 using more set theory axioms but fewer complex number axioms (add ax-10 2136, ax-11 2153, ax-13 2370, ax-nul 5306, and remove ax-1cn 11171, ax-icn 11172, ax-addcl 11173, and ax-mulcl 11175). (Contributed by Steven Nguyen, 4-Dec-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
c0exALT | ⊢ 0 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-i2m1 11181 | . . 3 ⊢ ((i · i) + 1) = 0 | |
2 | 1 | eqcomi 2740 | . 2 ⊢ 0 = ((i · i) + 1) |
3 | 2 | ovexi 7446 | 1 ⊢ 0 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 Vcvv 3473 (class class class)co 7412 0cc0 11113 1c1 11114 ici 11115 + caddc 11116 · cmul 11118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-nul 5306 ax-i2m1 11181 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-sn 4629 df-pr 4631 df-uni 4909 df-iota 6495 df-fv 6551 df-ov 7415 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |