Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > c0exALT | Structured version Visualization version GIF version |
Description: Alternate proof of c0ex 10666 using more set theory axioms but fewer complex number axioms (add ax-10 2143, ax-11 2159, ax-13 2380, ax-nul 5177, and remove ax-1cn 10626, ax-icn 10627, ax-addcl 10628, and ax-mulcl 10630). (Contributed by Steven Nguyen, 4-Dec-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
c0exALT | ⊢ 0 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-i2m1 10636 | . . 3 ⊢ ((i · i) + 1) = 0 | |
2 | 1 | eqcomi 2768 | . 2 ⊢ 0 = ((i · i) + 1) |
3 | 2 | ovexi 7185 | 1 ⊢ 0 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2112 Vcvv 3410 (class class class)co 7151 0cc0 10568 1c1 10569 ici 10570 + caddc 10571 · cmul 10573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-nul 5177 ax-i2m1 10636 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-ral 3076 df-rex 3077 df-v 3412 df-sbc 3698 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-sn 4524 df-pr 4526 df-uni 4800 df-iota 6295 df-fv 6344 df-ov 7154 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |