Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  c0exALT Structured version   Visualization version   GIF version

Theorem c0exALT 42240
Description: Alternate proof of c0ex 11168 using more set theory axioms but fewer complex number axioms (add ax-10 2142, ax-11 2158, ax-13 2370, ax-nul 5261, and remove ax-1cn 11126, ax-icn 11127, ax-addcl 11128, and ax-mulcl 11130). (Contributed by Steven Nguyen, 4-Dec-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
c0exALT 0 ∈ V

Proof of Theorem c0exALT
StepHypRef Expression
1 ax-i2m1 11136 . . 3 ((i · i) + 1) = 0
21eqcomi 2738 . 2 0 = ((i · i) + 1)
32ovexi 7421 1 0 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Vcvv 3447  (class class class)co 7387  0cc0 11068  1c1 11069  ici 11070   + caddc 11071   · cmul 11073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5261  ax-i2m1 11136
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-sn 4590  df-pr 4592  df-uni 4872  df-iota 6464  df-fv 6519  df-ov 7390
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator