![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > c0exALT | Structured version Visualization version GIF version |
Description: Alternate proof of c0ex 11247 using more set theory axioms but fewer complex number axioms (add ax-10 2137, ax-11 2153, ax-13 2373, ax-nul 5308, and remove ax-1cn 11205, ax-icn 11206, ax-addcl 11207, and ax-mulcl 11209). (Contributed by Steven Nguyen, 4-Dec-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
c0exALT | ⊢ 0 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-i2m1 11215 | . . 3 ⊢ ((i · i) + 1) = 0 | |
2 | 1 | eqcomi 2742 | . 2 ⊢ 0 = ((i · i) + 1) |
3 | 2 | ovexi 7460 | 1 ⊢ 0 ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2104 Vcvv 3477 (class class class)co 7426 0cc0 11147 1c1 11148 ici 11149 + caddc 11150 · cmul 11152 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-ext 2704 ax-nul 5308 ax-i2m1 11215 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1538 df-fal 1548 df-ex 1775 df-sb 2061 df-clab 2711 df-cleq 2725 df-clel 2812 df-ne 2937 df-v 3479 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-sn 4632 df-pr 4634 df-uni 4916 df-iota 6511 df-fv 6567 df-ov 7429 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |