| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > c0exALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of c0ex 11106 using more set theory axioms but fewer complex number axioms (add ax-10 2144, ax-11 2160, ax-13 2372, ax-nul 5242, and remove ax-1cn 11064, ax-icn 11065, ax-addcl 11066, and ax-mulcl 11068). (Contributed by Steven Nguyen, 4-Dec-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| c0exALT | ⊢ 0 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-i2m1 11074 | . . 3 ⊢ ((i · i) + 1) = 0 | |
| 2 | 1 | eqcomi 2740 | . 2 ⊢ 0 = ((i · i) + 1) |
| 3 | 2 | ovexi 7380 | 1 ⊢ 0 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Vcvv 3436 (class class class)co 7346 0cc0 11006 1c1 11007 ici 11008 + caddc 11009 · cmul 11011 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5242 ax-i2m1 11074 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-sn 4574 df-pr 4576 df-uni 4857 df-iota 6437 df-fv 6489 df-ov 7349 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |