Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  c0exALT Structured version   Visualization version   GIF version

Theorem c0exALT 42251
Description: Alternate proof of c0ex 11237 using more set theory axioms but fewer complex number axioms (add ax-10 2140, ax-11 2156, ax-13 2375, ax-nul 5286, and remove ax-1cn 11195, ax-icn 11196, ax-addcl 11197, and ax-mulcl 11199). (Contributed by Steven Nguyen, 4-Dec-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
c0exALT 0 ∈ V

Proof of Theorem c0exALT
StepHypRef Expression
1 ax-i2m1 11205 . . 3 ((i · i) + 1) = 0
21eqcomi 2743 . 2 0 = ((i · i) + 1)
32ovexi 7447 1 0 ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  Vcvv 3463  (class class class)co 7413  0cc0 11137  1c1 11138  ici 11139   + caddc 11140   · cmul 11142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-nul 5286  ax-i2m1 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-sn 4607  df-pr 4609  df-uni 4888  df-iota 6494  df-fv 6549  df-ov 7416
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator