| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > c0exALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of c0ex 11229 using more set theory axioms but fewer complex number axioms (add ax-10 2141, ax-11 2157, ax-13 2376, ax-nul 5276, and remove ax-1cn 11187, ax-icn 11188, ax-addcl 11189, and ax-mulcl 11191). (Contributed by Steven Nguyen, 4-Dec-2022.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| c0exALT | ⊢ 0 ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-i2m1 11197 | . . 3 ⊢ ((i · i) + 1) = 0 | |
| 2 | 1 | eqcomi 2744 | . 2 ⊢ 0 = ((i · i) + 1) |
| 3 | 2 | ovexi 7439 | 1 ⊢ 0 ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 Vcvv 3459 (class class class)co 7405 0cc0 11129 1c1 11130 ici 11131 + caddc 11132 · cmul 11134 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-nul 5276 ax-i2m1 11197 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-sn 4602 df-pr 4604 df-uni 4884 df-iota 6484 df-fv 6539 df-ov 7408 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |