Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mul02lem2 | Structured version Visualization version GIF version |
Description: Lemma for mul02 10896. Zero times a real is zero. (Contributed by Scott Fenton, 3-Jan-2013.) |
Ref | Expression |
---|---|
mul02lem2 | ⊢ (𝐴 ∈ ℝ → (0 · 𝐴) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1ne0 10684 | . 2 ⊢ 1 ≠ 0 | |
2 | ax-1cn 10673 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
3 | mul02lem1 10894 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 1 ∈ ℂ) → 1 = (1 + 1)) | |
4 | 2, 3 | mpan2 691 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → 1 = (1 + 1)) |
5 | 4 | eqcomd 2744 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → (1 + 1) = 1) |
6 | 5 | oveq2d 7186 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → ((i · i) + (1 + 1)) = ((i · i) + 1)) |
7 | ax-icn 10674 | . . . . . . . . 9 ⊢ i ∈ ℂ | |
8 | 7, 7 | mulcli 10726 | . . . . . . . 8 ⊢ (i · i) ∈ ℂ |
9 | 8, 2, 2 | addassi 10729 | . . . . . . 7 ⊢ (((i · i) + 1) + 1) = ((i · i) + (1 + 1)) |
10 | ax-i2m1 10683 | . . . . . . . 8 ⊢ ((i · i) + 1) = 0 | |
11 | 10 | oveq1i 7180 | . . . . . . 7 ⊢ (((i · i) + 1) + 1) = (0 + 1) |
12 | 9, 11 | eqtr3i 2763 | . . . . . 6 ⊢ ((i · i) + (1 + 1)) = (0 + 1) |
13 | 00id 10893 | . . . . . . 7 ⊢ (0 + 0) = 0 | |
14 | 10, 13 | eqtr4i 2764 | . . . . . 6 ⊢ ((i · i) + 1) = (0 + 0) |
15 | 6, 12, 14 | 3eqtr3g 2796 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → (0 + 1) = (0 + 0)) |
16 | 1re 10719 | . . . . . 6 ⊢ 1 ∈ ℝ | |
17 | 0re 10721 | . . . . . 6 ⊢ 0 ∈ ℝ | |
18 | readdcan 10892 | . . . . . 6 ⊢ ((1 ∈ ℝ ∧ 0 ∈ ℝ ∧ 0 ∈ ℝ) → ((0 + 1) = (0 + 0) ↔ 1 = 0)) | |
19 | 16, 17, 17, 18 | mp3an 1462 | . . . . 5 ⊢ ((0 + 1) = (0 + 0) ↔ 1 = 0) |
20 | 15, 19 | sylib 221 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → 1 = 0) |
21 | 20 | ex 416 | . . 3 ⊢ (𝐴 ∈ ℝ → ((0 · 𝐴) ≠ 0 → 1 = 0)) |
22 | 21 | necon1d 2956 | . 2 ⊢ (𝐴 ∈ ℝ → (1 ≠ 0 → (0 · 𝐴) = 0)) |
23 | 1, 22 | mpi 20 | 1 ⊢ (𝐴 ∈ ℝ → (0 · 𝐴) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ≠ wne 2934 (class class class)co 7170 ℂcc 10613 ℝcr 10614 0cc0 10615 1c1 10616 ici 10617 + caddc 10618 · cmul 10620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5429 df-po 5442 df-so 5443 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-ov 7173 df-er 8320 df-en 8556 df-dom 8557 df-sdom 8558 df-pnf 10755 df-mnf 10756 df-ltxr 10758 |
This theorem is referenced by: mul02 10896 rexmul 12747 mbfmulc2lem 24399 i1fmulc 24456 itg1mulc 24457 reabssgn 40789 stoweidlem34 43117 ztprmneprm 45217 nn0sumshdiglemA 45499 nn0sumshdiglem1 45501 |
Copyright terms: Public domain | W3C validator |