MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul02lem2 Structured version   Visualization version   GIF version

Theorem mul02lem2 11439
Description: Lemma for mul02 11440. Zero times a real is zero. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
mul02lem2 (𝐴 ∈ ℝ → (0 · 𝐴) = 0)

Proof of Theorem mul02lem2
StepHypRef Expression
1 ax-1ne0 11225 . 2 1 ≠ 0
2 ax-1cn 11214 . . . . . . . . 9 1 ∈ ℂ
3 mul02lem1 11438 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 1 ∈ ℂ) → 1 = (1 + 1))
42, 3mpan2 691 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → 1 = (1 + 1))
54eqcomd 2742 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → (1 + 1) = 1)
65oveq2d 7448 . . . . . 6 ((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → ((i · i) + (1 + 1)) = ((i · i) + 1))
7 ax-icn 11215 . . . . . . . . 9 i ∈ ℂ
87, 7mulcli 11269 . . . . . . . 8 (i · i) ∈ ℂ
98, 2, 2addassi 11272 . . . . . . 7 (((i · i) + 1) + 1) = ((i · i) + (1 + 1))
10 ax-i2m1 11224 . . . . . . . 8 ((i · i) + 1) = 0
1110oveq1i 7442 . . . . . . 7 (((i · i) + 1) + 1) = (0 + 1)
129, 11eqtr3i 2766 . . . . . 6 ((i · i) + (1 + 1)) = (0 + 1)
13 00id 11437 . . . . . . 7 (0 + 0) = 0
1410, 13eqtr4i 2767 . . . . . 6 ((i · i) + 1) = (0 + 0)
156, 12, 143eqtr3g 2799 . . . . 5 ((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → (0 + 1) = (0 + 0))
16 1re 11262 . . . . . 6 1 ∈ ℝ
17 0re 11264 . . . . . 6 0 ∈ ℝ
18 readdcan 11436 . . . . . 6 ((1 ∈ ℝ ∧ 0 ∈ ℝ ∧ 0 ∈ ℝ) → ((0 + 1) = (0 + 0) ↔ 1 = 0))
1916, 17, 17, 18mp3an 1462 . . . . 5 ((0 + 1) = (0 + 0) ↔ 1 = 0)
2015, 19sylib 218 . . . 4 ((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → 1 = 0)
2120ex 412 . . 3 (𝐴 ∈ ℝ → ((0 · 𝐴) ≠ 0 → 1 = 0))
2221necon1d 2961 . 2 (𝐴 ∈ ℝ → (1 ≠ 0 → (0 · 𝐴) = 0))
231, 22mpi 20 1 (𝐴 ∈ ℝ → (0 · 𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2939  (class class class)co 7432  cc 11154  cr 11155  0cc0 11156  1c1 11157  ici 11158   + caddc 11159   · cmul 11161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-po 5591  df-so 5592  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-ltxr 11301
This theorem is referenced by:  mul02  11440  rexmul  13314  mbfmulc2lem  25683  i1fmulc  25739  itg1mulc  25740  reabssgn  43654  stoweidlem34  46054  ztprmneprm  48268  nn0sumshdiglemA  48545  nn0sumshdiglem1  48547
  Copyright terms: Public domain W3C validator