MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul02lem2 Structured version   Visualization version   GIF version

Theorem mul02lem2 10820
Description: Lemma for mul02 10821. Zero times a real is zero. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
mul02lem2 (𝐴 ∈ ℝ → (0 · 𝐴) = 0)

Proof of Theorem mul02lem2
StepHypRef Expression
1 ax-1ne0 10609 . 2 1 ≠ 0
2 ax-1cn 10598 . . . . . . . . 9 1 ∈ ℂ
3 mul02lem1 10819 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 1 ∈ ℂ) → 1 = (1 + 1))
42, 3mpan2 689 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → 1 = (1 + 1))
54eqcomd 2830 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → (1 + 1) = 1)
65oveq2d 7175 . . . . . 6 ((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → ((i · i) + (1 + 1)) = ((i · i) + 1))
7 ax-icn 10599 . . . . . . . . 9 i ∈ ℂ
87, 7mulcli 10651 . . . . . . . 8 (i · i) ∈ ℂ
98, 2, 2addassi 10654 . . . . . . 7 (((i · i) + 1) + 1) = ((i · i) + (1 + 1))
10 ax-i2m1 10608 . . . . . . . 8 ((i · i) + 1) = 0
1110oveq1i 7169 . . . . . . 7 (((i · i) + 1) + 1) = (0 + 1)
129, 11eqtr3i 2849 . . . . . 6 ((i · i) + (1 + 1)) = (0 + 1)
13 00id 10818 . . . . . . 7 (0 + 0) = 0
1410, 13eqtr4i 2850 . . . . . 6 ((i · i) + 1) = (0 + 0)
156, 12, 143eqtr3g 2882 . . . . 5 ((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → (0 + 1) = (0 + 0))
16 1re 10644 . . . . . 6 1 ∈ ℝ
17 0re 10646 . . . . . 6 0 ∈ ℝ
18 readdcan 10817 . . . . . 6 ((1 ∈ ℝ ∧ 0 ∈ ℝ ∧ 0 ∈ ℝ) → ((0 + 1) = (0 + 0) ↔ 1 = 0))
1916, 17, 17, 18mp3an 1457 . . . . 5 ((0 + 1) = (0 + 0) ↔ 1 = 0)
2015, 19sylib 220 . . . 4 ((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → 1 = 0)
2120ex 415 . . 3 (𝐴 ∈ ℝ → ((0 · 𝐴) ≠ 0 → 1 = 0))
2221necon1d 3041 . 2 (𝐴 ∈ ℝ → (1 ≠ 0 → (0 · 𝐴) = 0))
231, 22mpi 20 1 (𝐴 ∈ ℝ → (0 · 𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  wne 3019  (class class class)co 7159  cc 10538  cr 10539  0cc0 10540  1c1 10541  ici 10542   + caddc 10543   · cmul 10545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-mpt 5150  df-id 5463  df-po 5477  df-so 5478  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7162  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-ltxr 10683
This theorem is referenced by:  mul02  10821  rexmul  12667  mbfmulc2lem  24251  i1fmulc  24307  itg1mulc  24308  stoweidlem34  42326  ztprmneprm  44402  nn0sumshdiglemA  44686  nn0sumshdiglem1  44688
  Copyright terms: Public domain W3C validator