MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mul02lem2 Structured version   Visualization version   GIF version

Theorem mul02lem2 10467
Description: Lemma for mul02 10468. Zero times a real is zero. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
mul02lem2 (𝐴 ∈ ℝ → (0 · 𝐴) = 0)

Proof of Theorem mul02lem2
StepHypRef Expression
1 ax-1ne0 10258 . 2 1 ≠ 0
2 ax-1cn 10247 . . . . . . . . 9 1 ∈ ℂ
3 mul02lem1 10466 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 1 ∈ ℂ) → 1 = (1 + 1))
42, 3mpan2 682 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → 1 = (1 + 1))
54eqcomd 2771 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → (1 + 1) = 1)
65oveq2d 6858 . . . . . 6 ((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → ((i · i) + (1 + 1)) = ((i · i) + 1))
7 ax-icn 10248 . . . . . . . . 9 i ∈ ℂ
87, 7mulcli 10301 . . . . . . . 8 (i · i) ∈ ℂ
98, 2, 2addassi 10304 . . . . . . 7 (((i · i) + 1) + 1) = ((i · i) + (1 + 1))
10 ax-i2m1 10257 . . . . . . . 8 ((i · i) + 1) = 0
1110oveq1i 6852 . . . . . . 7 (((i · i) + 1) + 1) = (0 + 1)
129, 11eqtr3i 2789 . . . . . 6 ((i · i) + (1 + 1)) = (0 + 1)
13 00id 10465 . . . . . . 7 (0 + 0) = 0
1410, 13eqtr4i 2790 . . . . . 6 ((i · i) + 1) = (0 + 0)
156, 12, 143eqtr3g 2822 . . . . 5 ((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → (0 + 1) = (0 + 0))
16 1re 10293 . . . . . 6 1 ∈ ℝ
17 0re 10295 . . . . . 6 0 ∈ ℝ
18 readdcan 10464 . . . . . 6 ((1 ∈ ℝ ∧ 0 ∈ ℝ ∧ 0 ∈ ℝ) → ((0 + 1) = (0 + 0) ↔ 1 = 0))
1916, 17, 17, 18mp3an 1585 . . . . 5 ((0 + 1) = (0 + 0) ↔ 1 = 0)
2015, 19sylib 209 . . . 4 ((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → 1 = 0)
2120ex 401 . . 3 (𝐴 ∈ ℝ → ((0 · 𝐴) ≠ 0 → 1 = 0))
2221necon1d 2959 . 2 (𝐴 ∈ ℝ → (1 ≠ 0 → (0 · 𝐴) = 0))
231, 22mpi 20 1 (𝐴 ∈ ℝ → (0 · 𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wne 2937  (class class class)co 6842  cc 10187  cr 10188  0cc0 10189  1c1 10190  ici 10191   + caddc 10192   · cmul 10194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-po 5198  df-so 5199  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-ov 6845  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-pnf 10330  df-mnf 10331  df-ltxr 10333
This theorem is referenced by:  mul02  10468  rexmul  12303  mbfmulc2lem  23705  i1fmulc  23761  itg1mulc  23762  stoweidlem34  40820  ztprmneprm  42726  nn0sumshdiglemA  43014  nn0sumshdiglem1  43016
  Copyright terms: Public domain W3C validator