| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mul02lem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for mul02 11312. Zero times a real is zero. (Contributed by Scott Fenton, 3-Jan-2013.) |
| Ref | Expression |
|---|---|
| mul02lem2 | ⊢ (𝐴 ∈ ℝ → (0 · 𝐴) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-1ne0 11097 | . 2 ⊢ 1 ≠ 0 | |
| 2 | ax-1cn 11086 | . . . . . . . . 9 ⊢ 1 ∈ ℂ | |
| 3 | mul02lem1 11310 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) ∧ 1 ∈ ℂ) → 1 = (1 + 1)) | |
| 4 | 2, 3 | mpan2 691 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → 1 = (1 + 1)) |
| 5 | 4 | eqcomd 2735 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → (1 + 1) = 1) |
| 6 | 5 | oveq2d 7369 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → ((i · i) + (1 + 1)) = ((i · i) + 1)) |
| 7 | ax-icn 11087 | . . . . . . . . 9 ⊢ i ∈ ℂ | |
| 8 | 7, 7 | mulcli 11141 | . . . . . . . 8 ⊢ (i · i) ∈ ℂ |
| 9 | 8, 2, 2 | addassi 11144 | . . . . . . 7 ⊢ (((i · i) + 1) + 1) = ((i · i) + (1 + 1)) |
| 10 | ax-i2m1 11096 | . . . . . . . 8 ⊢ ((i · i) + 1) = 0 | |
| 11 | 10 | oveq1i 7363 | . . . . . . 7 ⊢ (((i · i) + 1) + 1) = (0 + 1) |
| 12 | 9, 11 | eqtr3i 2754 | . . . . . 6 ⊢ ((i · i) + (1 + 1)) = (0 + 1) |
| 13 | 00id 11309 | . . . . . . 7 ⊢ (0 + 0) = 0 | |
| 14 | 10, 13 | eqtr4i 2755 | . . . . . 6 ⊢ ((i · i) + 1) = (0 + 0) |
| 15 | 6, 12, 14 | 3eqtr3g 2787 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → (0 + 1) = (0 + 0)) |
| 16 | 1re 11134 | . . . . . 6 ⊢ 1 ∈ ℝ | |
| 17 | 0re 11136 | . . . . . 6 ⊢ 0 ∈ ℝ | |
| 18 | readdcan 11308 | . . . . . 6 ⊢ ((1 ∈ ℝ ∧ 0 ∈ ℝ ∧ 0 ∈ ℝ) → ((0 + 1) = (0 + 0) ↔ 1 = 0)) | |
| 19 | 16, 17, 17, 18 | mp3an 1463 | . . . . 5 ⊢ ((0 + 1) = (0 + 0) ↔ 1 = 0) |
| 20 | 15, 19 | sylib 218 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ (0 · 𝐴) ≠ 0) → 1 = 0) |
| 21 | 20 | ex 412 | . . 3 ⊢ (𝐴 ∈ ℝ → ((0 · 𝐴) ≠ 0 → 1 = 0)) |
| 22 | 21 | necon1d 2947 | . 2 ⊢ (𝐴 ∈ ℝ → (1 ≠ 0 → (0 · 𝐴) = 0)) |
| 23 | 1, 22 | mpi 20 | 1 ⊢ (𝐴 ∈ ℝ → (0 · 𝐴) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 (class class class)co 7353 ℂcc 11026 ℝcr 11027 0cc0 11028 1c1 11029 ici 11030 + caddc 11031 · cmul 11033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-ltxr 11173 |
| This theorem is referenced by: mul02 11312 rexmul 13191 mbfmulc2lem 25564 i1fmulc 25620 itg1mulc 25621 reabssgn 43609 stoweidlem34 46016 ztprmneprm 48332 nn0sumshdiglemA 48605 nn0sumshdiglem1 48607 |
| Copyright terms: Public domain | W3C validator |