MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addrid Structured version   Visualization version   GIF version

Theorem addrid 11303
Description: 0 is an additive identity. This used to be one of our complex number axioms, until it was found to be dependent on the others. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
addrid (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)

Proof of Theorem addrid
Dummy variables 𝑐 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1re 11122 . 2 1 ∈ ℝ
2 ax-rnegex 11087 . 2 (1 ∈ ℝ → ∃𝑐 ∈ ℝ (1 + 𝑐) = 0)
3 ax-1ne0 11085 . . . . . 6 1 ≠ 0
4 oveq2 7363 . . . . . . . . . 10 (𝑐 = 0 → (1 + 𝑐) = (1 + 0))
54eqeq1d 2735 . . . . . . . . 9 (𝑐 = 0 → ((1 + 𝑐) = 0 ↔ (1 + 0) = 0))
65biimpcd 249 . . . . . . . 8 ((1 + 𝑐) = 0 → (𝑐 = 0 → (1 + 0) = 0))
7 oveq2 7363 . . . . . . . . 9 ((1 + 0) = 0 → (((i · i) · (i · i)) · (1 + 0)) = (((i · i) · (i · i)) · 0))
8 ax-icn 11075 . . . . . . . . . . . . . . 15 i ∈ ℂ
98, 8mulcli 11129 . . . . . . . . . . . . . 14 (i · i) ∈ ℂ
109, 9mulcli 11129 . . . . . . . . . . . . 13 ((i · i) · (i · i)) ∈ ℂ
11 ax-1cn 11074 . . . . . . . . . . . . 13 1 ∈ ℂ
12 0cn 11114 . . . . . . . . . . . . 13 0 ∈ ℂ
1310, 11, 12adddii 11134 . . . . . . . . . . . 12 (((i · i) · (i · i)) · (1 + 0)) = ((((i · i) · (i · i)) · 1) + (((i · i) · (i · i)) · 0))
1410mulridi 11126 . . . . . . . . . . . . 13 (((i · i) · (i · i)) · 1) = ((i · i) · (i · i))
15 mul01 11302 . . . . . . . . . . . . . . 15 (((i · i) · (i · i)) ∈ ℂ → (((i · i) · (i · i)) · 0) = 0)
1610, 15ax-mp 5 . . . . . . . . . . . . . 14 (((i · i) · (i · i)) · 0) = 0
17 ax-i2m1 11084 . . . . . . . . . . . . . 14 ((i · i) + 1) = 0
1816, 17eqtr4i 2759 . . . . . . . . . . . . 13 (((i · i) · (i · i)) · 0) = ((i · i) + 1)
1914, 18oveq12i 7367 . . . . . . . . . . . 12 ((((i · i) · (i · i)) · 1) + (((i · i) · (i · i)) · 0)) = (((i · i) · (i · i)) + ((i · i) + 1))
2013, 19eqtri 2756 . . . . . . . . . . 11 (((i · i) · (i · i)) · (1 + 0)) = (((i · i) · (i · i)) + ((i · i) + 1))
2120, 16eqeq12i 2751 . . . . . . . . . 10 ((((i · i) · (i · i)) · (1 + 0)) = (((i · i) · (i · i)) · 0) ↔ (((i · i) · (i · i)) + ((i · i) + 1)) = 0)
2210, 9, 11addassi 11132 . . . . . . . . . . . 12 ((((i · i) · (i · i)) + (i · i)) + 1) = (((i · i) · (i · i)) + ((i · i) + 1))
239mulridi 11126 . . . . . . . . . . . . . . 15 ((i · i) · 1) = (i · i)
2423oveq2i 7366 . . . . . . . . . . . . . 14 (((i · i) · (i · i)) + ((i · i) · 1)) = (((i · i) · (i · i)) + (i · i))
259, 9, 11adddii 11134 . . . . . . . . . . . . . . 15 ((i · i) · ((i · i) + 1)) = (((i · i) · (i · i)) + ((i · i) · 1))
2617oveq2i 7366 . . . . . . . . . . . . . . . 16 ((i · i) · ((i · i) + 1)) = ((i · i) · 0)
27 mul01 11302 . . . . . . . . . . . . . . . . 17 ((i · i) ∈ ℂ → ((i · i) · 0) = 0)
289, 27ax-mp 5 . . . . . . . . . . . . . . . 16 ((i · i) · 0) = 0
2926, 28eqtri 2756 . . . . . . . . . . . . . . 15 ((i · i) · ((i · i) + 1)) = 0
3025, 29eqtr3i 2758 . . . . . . . . . . . . . 14 (((i · i) · (i · i)) + ((i · i) · 1)) = 0
3124, 30eqtr3i 2758 . . . . . . . . . . . . 13 (((i · i) · (i · i)) + (i · i)) = 0
3231oveq1i 7365 . . . . . . . . . . . 12 ((((i · i) · (i · i)) + (i · i)) + 1) = (0 + 1)
3322, 32eqtr3i 2758 . . . . . . . . . . 11 (((i · i) · (i · i)) + ((i · i) + 1)) = (0 + 1)
34 00id 11298 . . . . . . . . . . . 12 (0 + 0) = 0
3534eqcomi 2742 . . . . . . . . . . 11 0 = (0 + 0)
3633, 35eqeq12i 2751 . . . . . . . . . 10 ((((i · i) · (i · i)) + ((i · i) + 1)) = 0 ↔ (0 + 1) = (0 + 0))
37 0re 11124 . . . . . . . . . . 11 0 ∈ ℝ
38 readdcan 11297 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ 0 ∈ ℝ ∧ 0 ∈ ℝ) → ((0 + 1) = (0 + 0) ↔ 1 = 0))
391, 37, 37, 38mp3an 1463 . . . . . . . . . 10 ((0 + 1) = (0 + 0) ↔ 1 = 0)
4021, 36, 393bitri 297 . . . . . . . . 9 ((((i · i) · (i · i)) · (1 + 0)) = (((i · i) · (i · i)) · 0) ↔ 1 = 0)
417, 40sylib 218 . . . . . . . 8 ((1 + 0) = 0 → 1 = 0)
426, 41syl6 35 . . . . . . 7 ((1 + 𝑐) = 0 → (𝑐 = 0 → 1 = 0))
4342necon3d 2951 . . . . . 6 ((1 + 𝑐) = 0 → (1 ≠ 0 → 𝑐 ≠ 0))
443, 43mpi 20 . . . . 5 ((1 + 𝑐) = 0 → 𝑐 ≠ 0)
45 ax-rrecex 11088 . . . . 5 ((𝑐 ∈ ℝ ∧ 𝑐 ≠ 0) → ∃𝑥 ∈ ℝ (𝑐 · 𝑥) = 1)
4644, 45sylan2 593 . . . 4 ((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) → ∃𝑥 ∈ ℝ (𝑐 · 𝑥) = 1)
47 simpr 484 . . . . . . . . . 10 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → 𝐴 ∈ ℂ)
48 simplrl 776 . . . . . . . . . . 11 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → 𝑥 ∈ ℝ)
4948recnd 11150 . . . . . . . . . 10 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → 𝑥 ∈ ℂ)
5047, 49mulcld 11142 . . . . . . . . 9 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → (𝐴 · 𝑥) ∈ ℂ)
51 simplll 774 . . . . . . . . . 10 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → 𝑐 ∈ ℝ)
5251recnd 11150 . . . . . . . . 9 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → 𝑐 ∈ ℂ)
5312a1i 11 . . . . . . . . 9 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → 0 ∈ ℂ)
5450, 52, 53adddid 11146 . . . . . . . 8 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → ((𝐴 · 𝑥) · (𝑐 + 0)) = (((𝐴 · 𝑥) · 𝑐) + ((𝐴 · 𝑥) · 0)))
5511a1i 11 . . . . . . . . . . . . 13 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → 1 ∈ ℂ)
5655, 52, 53addassd 11144 . . . . . . . . . . . 12 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → ((1 + 𝑐) + 0) = (1 + (𝑐 + 0)))
57 simpllr 775 . . . . . . . . . . . . 13 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → (1 + 𝑐) = 0)
5857oveq1d 7370 . . . . . . . . . . . 12 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → ((1 + 𝑐) + 0) = (0 + 0))
5956, 58eqtr3d 2770 . . . . . . . . . . 11 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → (1 + (𝑐 + 0)) = (0 + 0))
6034, 59, 573eqtr4a 2794 . . . . . . . . . 10 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → (1 + (𝑐 + 0)) = (1 + 𝑐))
6137a1i 11 . . . . . . . . . . . 12 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → 0 ∈ ℝ)
6251, 61readdcld 11151 . . . . . . . . . . 11 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → (𝑐 + 0) ∈ ℝ)
631a1i 11 . . . . . . . . . . 11 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → 1 ∈ ℝ)
64 readdcan 11297 . . . . . . . . . . 11 (((𝑐 + 0) ∈ ℝ ∧ 𝑐 ∈ ℝ ∧ 1 ∈ ℝ) → ((1 + (𝑐 + 0)) = (1 + 𝑐) ↔ (𝑐 + 0) = 𝑐))
6562, 51, 63, 64syl3anc 1373 . . . . . . . . . 10 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → ((1 + (𝑐 + 0)) = (1 + 𝑐) ↔ (𝑐 + 0) = 𝑐))
6660, 65mpbid 232 . . . . . . . . 9 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → (𝑐 + 0) = 𝑐)
6766oveq2d 7371 . . . . . . . 8 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → ((𝐴 · 𝑥) · (𝑐 + 0)) = ((𝐴 · 𝑥) · 𝑐))
6854, 67eqtr3d 2770 . . . . . . 7 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → (((𝐴 · 𝑥) · 𝑐) + ((𝐴 · 𝑥) · 0)) = ((𝐴 · 𝑥) · 𝑐))
69 mul31 11290 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝐴 · 𝑥) · 𝑐) = ((𝑐 · 𝑥) · 𝐴))
7047, 49, 52, 69syl3anc 1373 . . . . . . . . 9 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → ((𝐴 · 𝑥) · 𝑐) = ((𝑐 · 𝑥) · 𝐴))
71 simplrr 777 . . . . . . . . . 10 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → (𝑐 · 𝑥) = 1)
7271oveq1d 7370 . . . . . . . . 9 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → ((𝑐 · 𝑥) · 𝐴) = (1 · 𝐴))
7347mullidd 11140 . . . . . . . . 9 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → (1 · 𝐴) = 𝐴)
7470, 72, 733eqtrd 2772 . . . . . . . 8 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → ((𝐴 · 𝑥) · 𝑐) = 𝐴)
75 mul01 11302 . . . . . . . . 9 ((𝐴 · 𝑥) ∈ ℂ → ((𝐴 · 𝑥) · 0) = 0)
7650, 75syl 17 . . . . . . . 8 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → ((𝐴 · 𝑥) · 0) = 0)
7774, 76oveq12d 7373 . . . . . . 7 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → (((𝐴 · 𝑥) · 𝑐) + ((𝐴 · 𝑥) · 0)) = (𝐴 + 0))
7868, 77, 743eqtr3d 2776 . . . . . 6 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → (𝐴 + 0) = 𝐴)
7978exp42 435 . . . . 5 ((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) → (𝑥 ∈ ℝ → ((𝑐 · 𝑥) = 1 → (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴))))
8079rexlimdv 3133 . . . 4 ((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) → (∃𝑥 ∈ ℝ (𝑐 · 𝑥) = 1 → (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)))
8146, 80mpd 15 . . 3 ((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) → (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴))
8281rexlimiva 3127 . 2 (∃𝑐 ∈ ℝ (1 + 𝑐) = 0 → (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴))
831, 2, 82mp2b 10 1 (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2930  wrex 3058  (class class class)co 7355  cc 11014  cr 11015  0cc0 11016  1c1 11017  ici 11018   + caddc 11019   · cmul 11021
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-po 5529  df-so 5530  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-er 8631  df-en 8879  df-dom 8880  df-sdom 8881  df-pnf 11158  df-mnf 11159  df-ltxr 11161
This theorem is referenced by:  cnegex  11304  addlid  11306  addcan2  11308  addridi  11310  addridd  11323  subid  11390  subid1  11391  addid0  11546  swrdccat3blem  14656  shftval3  14993  reim0  15035  isercolllem3  15584  fsumcvg  15629  summolem2a  15632  risefac1  15950  chnccat  18542  cnaddid  19792  ovolicc1  25454  addsqnreup  27391  brbtwn2  28894  axsegconlem1  28906  ax5seglem4  28921  axeuclid  28952  axcontlem2  28954  axcontlem4  28956  gsumzrsum  33050  stoweidlem26  46138  2zrngamnd  48361  aacllem  49916
  Copyright terms: Public domain W3C validator