MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addrid Structured version   Visualization version   GIF version

Theorem addrid 11361
Description: 0 is an additive identity. This used to be one of our complex number axioms, until it was found to be dependent on the others. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
addrid (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)

Proof of Theorem addrid
Dummy variables 𝑐 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1re 11181 . 2 1 ∈ ℝ
2 ax-rnegex 11146 . 2 (1 ∈ ℝ → ∃𝑐 ∈ ℝ (1 + 𝑐) = 0)
3 ax-1ne0 11144 . . . . . 6 1 ≠ 0
4 oveq2 7398 . . . . . . . . . 10 (𝑐 = 0 → (1 + 𝑐) = (1 + 0))
54eqeq1d 2732 . . . . . . . . 9 (𝑐 = 0 → ((1 + 𝑐) = 0 ↔ (1 + 0) = 0))
65biimpcd 249 . . . . . . . 8 ((1 + 𝑐) = 0 → (𝑐 = 0 → (1 + 0) = 0))
7 oveq2 7398 . . . . . . . . 9 ((1 + 0) = 0 → (((i · i) · (i · i)) · (1 + 0)) = (((i · i) · (i · i)) · 0))
8 ax-icn 11134 . . . . . . . . . . . . . . 15 i ∈ ℂ
98, 8mulcli 11188 . . . . . . . . . . . . . 14 (i · i) ∈ ℂ
109, 9mulcli 11188 . . . . . . . . . . . . 13 ((i · i) · (i · i)) ∈ ℂ
11 ax-1cn 11133 . . . . . . . . . . . . 13 1 ∈ ℂ
12 0cn 11173 . . . . . . . . . . . . 13 0 ∈ ℂ
1310, 11, 12adddii 11193 . . . . . . . . . . . 12 (((i · i) · (i · i)) · (1 + 0)) = ((((i · i) · (i · i)) · 1) + (((i · i) · (i · i)) · 0))
1410mulridi 11185 . . . . . . . . . . . . 13 (((i · i) · (i · i)) · 1) = ((i · i) · (i · i))
15 mul01 11360 . . . . . . . . . . . . . . 15 (((i · i) · (i · i)) ∈ ℂ → (((i · i) · (i · i)) · 0) = 0)
1610, 15ax-mp 5 . . . . . . . . . . . . . 14 (((i · i) · (i · i)) · 0) = 0
17 ax-i2m1 11143 . . . . . . . . . . . . . 14 ((i · i) + 1) = 0
1816, 17eqtr4i 2756 . . . . . . . . . . . . 13 (((i · i) · (i · i)) · 0) = ((i · i) + 1)
1914, 18oveq12i 7402 . . . . . . . . . . . 12 ((((i · i) · (i · i)) · 1) + (((i · i) · (i · i)) · 0)) = (((i · i) · (i · i)) + ((i · i) + 1))
2013, 19eqtri 2753 . . . . . . . . . . 11 (((i · i) · (i · i)) · (1 + 0)) = (((i · i) · (i · i)) + ((i · i) + 1))
2120, 16eqeq12i 2748 . . . . . . . . . 10 ((((i · i) · (i · i)) · (1 + 0)) = (((i · i) · (i · i)) · 0) ↔ (((i · i) · (i · i)) + ((i · i) + 1)) = 0)
2210, 9, 11addassi 11191 . . . . . . . . . . . 12 ((((i · i) · (i · i)) + (i · i)) + 1) = (((i · i) · (i · i)) + ((i · i) + 1))
239mulridi 11185 . . . . . . . . . . . . . . 15 ((i · i) · 1) = (i · i)
2423oveq2i 7401 . . . . . . . . . . . . . 14 (((i · i) · (i · i)) + ((i · i) · 1)) = (((i · i) · (i · i)) + (i · i))
259, 9, 11adddii 11193 . . . . . . . . . . . . . . 15 ((i · i) · ((i · i) + 1)) = (((i · i) · (i · i)) + ((i · i) · 1))
2617oveq2i 7401 . . . . . . . . . . . . . . . 16 ((i · i) · ((i · i) + 1)) = ((i · i) · 0)
27 mul01 11360 . . . . . . . . . . . . . . . . 17 ((i · i) ∈ ℂ → ((i · i) · 0) = 0)
289, 27ax-mp 5 . . . . . . . . . . . . . . . 16 ((i · i) · 0) = 0
2926, 28eqtri 2753 . . . . . . . . . . . . . . 15 ((i · i) · ((i · i) + 1)) = 0
3025, 29eqtr3i 2755 . . . . . . . . . . . . . 14 (((i · i) · (i · i)) + ((i · i) · 1)) = 0
3124, 30eqtr3i 2755 . . . . . . . . . . . . 13 (((i · i) · (i · i)) + (i · i)) = 0
3231oveq1i 7400 . . . . . . . . . . . 12 ((((i · i) · (i · i)) + (i · i)) + 1) = (0 + 1)
3322, 32eqtr3i 2755 . . . . . . . . . . 11 (((i · i) · (i · i)) + ((i · i) + 1)) = (0 + 1)
34 00id 11356 . . . . . . . . . . . 12 (0 + 0) = 0
3534eqcomi 2739 . . . . . . . . . . 11 0 = (0 + 0)
3633, 35eqeq12i 2748 . . . . . . . . . 10 ((((i · i) · (i · i)) + ((i · i) + 1)) = 0 ↔ (0 + 1) = (0 + 0))
37 0re 11183 . . . . . . . . . . 11 0 ∈ ℝ
38 readdcan 11355 . . . . . . . . . . 11 ((1 ∈ ℝ ∧ 0 ∈ ℝ ∧ 0 ∈ ℝ) → ((0 + 1) = (0 + 0) ↔ 1 = 0))
391, 37, 37, 38mp3an 1463 . . . . . . . . . 10 ((0 + 1) = (0 + 0) ↔ 1 = 0)
4021, 36, 393bitri 297 . . . . . . . . 9 ((((i · i) · (i · i)) · (1 + 0)) = (((i · i) · (i · i)) · 0) ↔ 1 = 0)
417, 40sylib 218 . . . . . . . 8 ((1 + 0) = 0 → 1 = 0)
426, 41syl6 35 . . . . . . 7 ((1 + 𝑐) = 0 → (𝑐 = 0 → 1 = 0))
4342necon3d 2947 . . . . . 6 ((1 + 𝑐) = 0 → (1 ≠ 0 → 𝑐 ≠ 0))
443, 43mpi 20 . . . . 5 ((1 + 𝑐) = 0 → 𝑐 ≠ 0)
45 ax-rrecex 11147 . . . . 5 ((𝑐 ∈ ℝ ∧ 𝑐 ≠ 0) → ∃𝑥 ∈ ℝ (𝑐 · 𝑥) = 1)
4644, 45sylan2 593 . . . 4 ((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) → ∃𝑥 ∈ ℝ (𝑐 · 𝑥) = 1)
47 simpr 484 . . . . . . . . . 10 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → 𝐴 ∈ ℂ)
48 simplrl 776 . . . . . . . . . . 11 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → 𝑥 ∈ ℝ)
4948recnd 11209 . . . . . . . . . 10 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → 𝑥 ∈ ℂ)
5047, 49mulcld 11201 . . . . . . . . 9 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → (𝐴 · 𝑥) ∈ ℂ)
51 simplll 774 . . . . . . . . . 10 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → 𝑐 ∈ ℝ)
5251recnd 11209 . . . . . . . . 9 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → 𝑐 ∈ ℂ)
5312a1i 11 . . . . . . . . 9 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → 0 ∈ ℂ)
5450, 52, 53adddid 11205 . . . . . . . 8 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → ((𝐴 · 𝑥) · (𝑐 + 0)) = (((𝐴 · 𝑥) · 𝑐) + ((𝐴 · 𝑥) · 0)))
5511a1i 11 . . . . . . . . . . . . 13 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → 1 ∈ ℂ)
5655, 52, 53addassd 11203 . . . . . . . . . . . 12 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → ((1 + 𝑐) + 0) = (1 + (𝑐 + 0)))
57 simpllr 775 . . . . . . . . . . . . 13 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → (1 + 𝑐) = 0)
5857oveq1d 7405 . . . . . . . . . . . 12 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → ((1 + 𝑐) + 0) = (0 + 0))
5956, 58eqtr3d 2767 . . . . . . . . . . 11 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → (1 + (𝑐 + 0)) = (0 + 0))
6034, 59, 573eqtr4a 2791 . . . . . . . . . 10 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → (1 + (𝑐 + 0)) = (1 + 𝑐))
6137a1i 11 . . . . . . . . . . . 12 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → 0 ∈ ℝ)
6251, 61readdcld 11210 . . . . . . . . . . 11 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → (𝑐 + 0) ∈ ℝ)
631a1i 11 . . . . . . . . . . 11 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → 1 ∈ ℝ)
64 readdcan 11355 . . . . . . . . . . 11 (((𝑐 + 0) ∈ ℝ ∧ 𝑐 ∈ ℝ ∧ 1 ∈ ℝ) → ((1 + (𝑐 + 0)) = (1 + 𝑐) ↔ (𝑐 + 0) = 𝑐))
6562, 51, 63, 64syl3anc 1373 . . . . . . . . . 10 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → ((1 + (𝑐 + 0)) = (1 + 𝑐) ↔ (𝑐 + 0) = 𝑐))
6660, 65mpbid 232 . . . . . . . . 9 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → (𝑐 + 0) = 𝑐)
6766oveq2d 7406 . . . . . . . 8 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → ((𝐴 · 𝑥) · (𝑐 + 0)) = ((𝐴 · 𝑥) · 𝑐))
6854, 67eqtr3d 2767 . . . . . . 7 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → (((𝐴 · 𝑥) · 𝑐) + ((𝐴 · 𝑥) · 0)) = ((𝐴 · 𝑥) · 𝑐))
69 mul31 11348 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ((𝐴 · 𝑥) · 𝑐) = ((𝑐 · 𝑥) · 𝐴))
7047, 49, 52, 69syl3anc 1373 . . . . . . . . 9 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → ((𝐴 · 𝑥) · 𝑐) = ((𝑐 · 𝑥) · 𝐴))
71 simplrr 777 . . . . . . . . . 10 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → (𝑐 · 𝑥) = 1)
7271oveq1d 7405 . . . . . . . . 9 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → ((𝑐 · 𝑥) · 𝐴) = (1 · 𝐴))
7347mullidd 11199 . . . . . . . . 9 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → (1 · 𝐴) = 𝐴)
7470, 72, 733eqtrd 2769 . . . . . . . 8 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → ((𝐴 · 𝑥) · 𝑐) = 𝐴)
75 mul01 11360 . . . . . . . . 9 ((𝐴 · 𝑥) ∈ ℂ → ((𝐴 · 𝑥) · 0) = 0)
7650, 75syl 17 . . . . . . . 8 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → ((𝐴 · 𝑥) · 0) = 0)
7774, 76oveq12d 7408 . . . . . . 7 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → (((𝐴 · 𝑥) · 𝑐) + ((𝐴 · 𝑥) · 0)) = (𝐴 + 0))
7868, 77, 743eqtr3d 2773 . . . . . 6 ((((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) ∧ (𝑥 ∈ ℝ ∧ (𝑐 · 𝑥) = 1)) ∧ 𝐴 ∈ ℂ) → (𝐴 + 0) = 𝐴)
7978exp42 435 . . . . 5 ((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) → (𝑥 ∈ ℝ → ((𝑐 · 𝑥) = 1 → (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴))))
8079rexlimdv 3133 . . . 4 ((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) → (∃𝑥 ∈ ℝ (𝑐 · 𝑥) = 1 → (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)))
8146, 80mpd 15 . . 3 ((𝑐 ∈ ℝ ∧ (1 + 𝑐) = 0) → (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴))
8281rexlimiva 3127 . 2 (∃𝑐 ∈ ℝ (1 + 𝑐) = 0 → (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴))
831, 2, 82mp2b 10 1 (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  wrex 3054  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075  1c1 11076  ici 11077   + caddc 11078   · cmul 11080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-ltxr 11220
This theorem is referenced by:  cnegex  11362  addlid  11364  addcan2  11366  addridi  11368  addridd  11381  subid  11448  subid1  11449  addid0  11604  swrdccat3blem  14711  shftval3  15049  reim0  15091  isercolllem3  15640  fsumcvg  15685  summolem2a  15688  risefac1  16006  cnaddid  19807  ovolicc1  25424  addsqnreup  27361  brbtwn2  28839  axsegconlem1  28851  ax5seglem4  28866  axeuclid  28897  axcontlem2  28899  axcontlem4  28901  gsumzrsum  33006  stoweidlem26  46031  2zrngamnd  48239  aacllem  49794
  Copyright terms: Public domain W3C validator