Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  re1m1e0m0 Structured version   Visualization version   GIF version

Theorem re1m1e0m0 42392
Description: Equality of two left-additive identities. See resubidaddlid 42390. Uses ax-i2m1 11143. (Contributed by SN, 25-Dec-2023.)
Assertion
Ref Expression
re1m1e0m0 (1 − 1) = (0 − 0)

Proof of Theorem re1m1e0m0
StepHypRef Expression
1 0red 11184 . . 3 (⊤ → 0 ∈ ℝ)
2 1re 11181 . . . . 5 1 ∈ ℝ
3 rersubcl 42373 . . . . 5 ((1 ∈ ℝ ∧ 1 ∈ ℝ) → (1 − 1) ∈ ℝ)
42, 2, 3mp2an 692 . . . 4 (1 − 1) ∈ ℝ
54a1i 11 . . 3 (⊤ → (1 − 1) ∈ ℝ)
6 ax-icn 11134 . . . . . . . 8 i ∈ ℂ
76, 6mulcli 11188 . . . . . . 7 (i · i) ∈ ℂ
8 ax-1cn 11133 . . . . . . 7 1 ∈ ℂ
94recni 11195 . . . . . . 7 (1 − 1) ∈ ℂ
107, 8, 9addassi 11191 . . . . . 6 (((i · i) + 1) + (1 − 1)) = ((i · i) + (1 + (1 − 1)))
11 repncan3 42378 . . . . . . . 8 ((1 ∈ ℝ ∧ 1 ∈ ℝ) → (1 + (1 − 1)) = 1)
122, 2, 11mp2an 692 . . . . . . 7 (1 + (1 − 1)) = 1
1312oveq2i 7401 . . . . . 6 ((i · i) + (1 + (1 − 1))) = ((i · i) + 1)
1410, 13eqtri 2753 . . . . 5 (((i · i) + 1) + (1 − 1)) = ((i · i) + 1)
15 ax-i2m1 11143 . . . . . 6 ((i · i) + 1) = 0
1615oveq1i 7400 . . . . 5 (((i · i) + 1) + (1 − 1)) = (0 + (1 − 1))
1714, 16, 153eqtr3i 2761 . . . 4 (0 + (1 − 1)) = 0
1817a1i 11 . . 3 (⊤ → (0 + (1 − 1)) = 0)
191, 5, 18reladdrsub 42380 . 2 (⊤ → (1 − 1) = (0 − 0))
2019mptru 1547 1 (1 − 1) = (0 − 0)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wtru 1541  wcel 2109  (class class class)co 7390  cr 11074  0cc0 11075  1c1 11076  ici 11077   + caddc 11078   · cmul 11080   cresub 42360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-addass 11140  ax-i2m1 11143  ax-1ne0 11144  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-ltxr 11220  df-resub 42361
This theorem is referenced by:  sn-00idlem1  42393  sn-00idlem2  42394  remul02  42400
  Copyright terms: Public domain W3C validator