| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > re1m1e0m0 | Structured version Visualization version GIF version | ||
| Description: Equality of two left-additive identities. See resubidaddlid 42383. Uses ax-i2m1 11136. (Contributed by SN, 25-Dec-2023.) |
| Ref | Expression |
|---|---|
| re1m1e0m0 | ⊢ (1 −ℝ 1) = (0 −ℝ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0red 11177 | . . 3 ⊢ (⊤ → 0 ∈ ℝ) | |
| 2 | 1re 11174 | . . . . 5 ⊢ 1 ∈ ℝ | |
| 3 | rersubcl 42366 | . . . . 5 ⊢ ((1 ∈ ℝ ∧ 1 ∈ ℝ) → (1 −ℝ 1) ∈ ℝ) | |
| 4 | 2, 2, 3 | mp2an 692 | . . . 4 ⊢ (1 −ℝ 1) ∈ ℝ |
| 5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → (1 −ℝ 1) ∈ ℝ) |
| 6 | ax-icn 11127 | . . . . . . . 8 ⊢ i ∈ ℂ | |
| 7 | 6, 6 | mulcli 11181 | . . . . . . 7 ⊢ (i · i) ∈ ℂ |
| 8 | ax-1cn 11126 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
| 9 | 4 | recni 11188 | . . . . . . 7 ⊢ (1 −ℝ 1) ∈ ℂ |
| 10 | 7, 8, 9 | addassi 11184 | . . . . . 6 ⊢ (((i · i) + 1) + (1 −ℝ 1)) = ((i · i) + (1 + (1 −ℝ 1))) |
| 11 | repncan3 42371 | . . . . . . . 8 ⊢ ((1 ∈ ℝ ∧ 1 ∈ ℝ) → (1 + (1 −ℝ 1)) = 1) | |
| 12 | 2, 2, 11 | mp2an 692 | . . . . . . 7 ⊢ (1 + (1 −ℝ 1)) = 1 |
| 13 | 12 | oveq2i 7398 | . . . . . 6 ⊢ ((i · i) + (1 + (1 −ℝ 1))) = ((i · i) + 1) |
| 14 | 10, 13 | eqtri 2752 | . . . . 5 ⊢ (((i · i) + 1) + (1 −ℝ 1)) = ((i · i) + 1) |
| 15 | ax-i2m1 11136 | . . . . . 6 ⊢ ((i · i) + 1) = 0 | |
| 16 | 15 | oveq1i 7397 | . . . . 5 ⊢ (((i · i) + 1) + (1 −ℝ 1)) = (0 + (1 −ℝ 1)) |
| 17 | 14, 16, 15 | 3eqtr3i 2760 | . . . 4 ⊢ (0 + (1 −ℝ 1)) = 0 |
| 18 | 17 | a1i 11 | . . 3 ⊢ (⊤ → (0 + (1 −ℝ 1)) = 0) |
| 19 | 1, 5, 18 | reladdrsub 42373 | . 2 ⊢ (⊤ → (1 −ℝ 1) = (0 −ℝ 0)) |
| 20 | 19 | mptru 1547 | 1 ⊢ (1 −ℝ 1) = (0 −ℝ 0) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 (class class class)co 7387 ℝcr 11067 0cc0 11068 1c1 11069 ici 11070 + caddc 11071 · cmul 11073 −ℝ cresub 42353 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-addass 11133 ax-i2m1 11136 ax-1ne0 11137 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 df-resub 42354 |
| This theorem is referenced by: sn-00idlem1 42386 sn-00idlem2 42387 remul02 42393 |
| Copyright terms: Public domain | W3C validator |