| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > re1m1e0m0 | Structured version Visualization version GIF version | ||
| Description: Equality of two left-additive identities. See resubidaddlid 42356. Uses ax-i2m1 11112. (Contributed by SN, 25-Dec-2023.) |
| Ref | Expression |
|---|---|
| re1m1e0m0 | ⊢ (1 −ℝ 1) = (0 −ℝ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0red 11153 | . . 3 ⊢ (⊤ → 0 ∈ ℝ) | |
| 2 | 1re 11150 | . . . . 5 ⊢ 1 ∈ ℝ | |
| 3 | rersubcl 42339 | . . . . 5 ⊢ ((1 ∈ ℝ ∧ 1 ∈ ℝ) → (1 −ℝ 1) ∈ ℝ) | |
| 4 | 2, 2, 3 | mp2an 692 | . . . 4 ⊢ (1 −ℝ 1) ∈ ℝ |
| 5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → (1 −ℝ 1) ∈ ℝ) |
| 6 | ax-icn 11103 | . . . . . . . 8 ⊢ i ∈ ℂ | |
| 7 | 6, 6 | mulcli 11157 | . . . . . . 7 ⊢ (i · i) ∈ ℂ |
| 8 | ax-1cn 11102 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
| 9 | 4 | recni 11164 | . . . . . . 7 ⊢ (1 −ℝ 1) ∈ ℂ |
| 10 | 7, 8, 9 | addassi 11160 | . . . . . 6 ⊢ (((i · i) + 1) + (1 −ℝ 1)) = ((i · i) + (1 + (1 −ℝ 1))) |
| 11 | repncan3 42344 | . . . . . . . 8 ⊢ ((1 ∈ ℝ ∧ 1 ∈ ℝ) → (1 + (1 −ℝ 1)) = 1) | |
| 12 | 2, 2, 11 | mp2an 692 | . . . . . . 7 ⊢ (1 + (1 −ℝ 1)) = 1 |
| 13 | 12 | oveq2i 7380 | . . . . . 6 ⊢ ((i · i) + (1 + (1 −ℝ 1))) = ((i · i) + 1) |
| 14 | 10, 13 | eqtri 2752 | . . . . 5 ⊢ (((i · i) + 1) + (1 −ℝ 1)) = ((i · i) + 1) |
| 15 | ax-i2m1 11112 | . . . . . 6 ⊢ ((i · i) + 1) = 0 | |
| 16 | 15 | oveq1i 7379 | . . . . 5 ⊢ (((i · i) + 1) + (1 −ℝ 1)) = (0 + (1 −ℝ 1)) |
| 17 | 14, 16, 15 | 3eqtr3i 2760 | . . . 4 ⊢ (0 + (1 −ℝ 1)) = 0 |
| 18 | 17 | a1i 11 | . . 3 ⊢ (⊤ → (0 + (1 −ℝ 1)) = 0) |
| 19 | 1, 5, 18 | reladdrsub 42346 | . 2 ⊢ (⊤ → (1 −ℝ 1) = (0 −ℝ 0)) |
| 20 | 19 | mptru 1547 | 1 ⊢ (1 −ℝ 1) = (0 −ℝ 0) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 (class class class)co 7369 ℝcr 11043 0cc0 11044 1c1 11045 ici 11046 + caddc 11047 · cmul 11049 −ℝ cresub 42326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-addass 11109 ax-i2m1 11112 ax-1ne0 11113 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-ltxr 11189 df-resub 42327 |
| This theorem is referenced by: sn-00idlem1 42359 sn-00idlem2 42360 remul02 42366 |
| Copyright terms: Public domain | W3C validator |