| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > re1m1e0m0 | Structured version Visualization version GIF version | ||
| Description: Equality of two left-additive identities. See resubidaddlid 42428. Uses ax-i2m1 11069. (Contributed by SN, 25-Dec-2023.) |
| Ref | Expression |
|---|---|
| re1m1e0m0 | ⊢ (1 −ℝ 1) = (0 −ℝ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0red 11110 | . . 3 ⊢ (⊤ → 0 ∈ ℝ) | |
| 2 | 1re 11107 | . . . . 5 ⊢ 1 ∈ ℝ | |
| 3 | rersubcl 42411 | . . . . 5 ⊢ ((1 ∈ ℝ ∧ 1 ∈ ℝ) → (1 −ℝ 1) ∈ ℝ) | |
| 4 | 2, 2, 3 | mp2an 692 | . . . 4 ⊢ (1 −ℝ 1) ∈ ℝ |
| 5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → (1 −ℝ 1) ∈ ℝ) |
| 6 | ax-icn 11060 | . . . . . . . 8 ⊢ i ∈ ℂ | |
| 7 | 6, 6 | mulcli 11114 | . . . . . . 7 ⊢ (i · i) ∈ ℂ |
| 8 | ax-1cn 11059 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
| 9 | 4 | recni 11121 | . . . . . . 7 ⊢ (1 −ℝ 1) ∈ ℂ |
| 10 | 7, 8, 9 | addassi 11117 | . . . . . 6 ⊢ (((i · i) + 1) + (1 −ℝ 1)) = ((i · i) + (1 + (1 −ℝ 1))) |
| 11 | repncan3 42416 | . . . . . . . 8 ⊢ ((1 ∈ ℝ ∧ 1 ∈ ℝ) → (1 + (1 −ℝ 1)) = 1) | |
| 12 | 2, 2, 11 | mp2an 692 | . . . . . . 7 ⊢ (1 + (1 −ℝ 1)) = 1 |
| 13 | 12 | oveq2i 7352 | . . . . . 6 ⊢ ((i · i) + (1 + (1 −ℝ 1))) = ((i · i) + 1) |
| 14 | 10, 13 | eqtri 2754 | . . . . 5 ⊢ (((i · i) + 1) + (1 −ℝ 1)) = ((i · i) + 1) |
| 15 | ax-i2m1 11069 | . . . . . 6 ⊢ ((i · i) + 1) = 0 | |
| 16 | 15 | oveq1i 7351 | . . . . 5 ⊢ (((i · i) + 1) + (1 −ℝ 1)) = (0 + (1 −ℝ 1)) |
| 17 | 14, 16, 15 | 3eqtr3i 2762 | . . . 4 ⊢ (0 + (1 −ℝ 1)) = 0 |
| 18 | 17 | a1i 11 | . . 3 ⊢ (⊤ → (0 + (1 −ℝ 1)) = 0) |
| 19 | 1, 5, 18 | reladdrsub 42418 | . 2 ⊢ (⊤ → (1 −ℝ 1) = (0 −ℝ 0)) |
| 20 | 19 | mptru 1548 | 1 ⊢ (1 −ℝ 1) = (0 −ℝ 0) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ⊤wtru 1542 ∈ wcel 2111 (class class class)co 7341 ℝcr 11000 0cc0 11001 1c1 11002 ici 11003 + caddc 11004 · cmul 11006 −ℝ cresub 42398 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-addass 11066 ax-i2m1 11069 ax-1ne0 11070 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-po 5519 df-so 5520 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-ltxr 11146 df-resub 42399 |
| This theorem is referenced by: sn-00idlem1 42431 sn-00idlem2 42432 remul02 42438 |
| Copyright terms: Public domain | W3C validator |