![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > re1m1e0m0 | Structured version Visualization version GIF version |
Description: Equality of two left-additive identities. See resubidaddlid 42371. Uses ax-i2m1 11252. (Contributed by SN, 25-Dec-2023.) |
Ref | Expression |
---|---|
re1m1e0m0 | ⊢ (1 −ℝ 1) = (0 −ℝ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0red 11293 | . . 3 ⊢ (⊤ → 0 ∈ ℝ) | |
2 | 1re 11290 | . . . . 5 ⊢ 1 ∈ ℝ | |
3 | rersubcl 42354 | . . . . 5 ⊢ ((1 ∈ ℝ ∧ 1 ∈ ℝ) → (1 −ℝ 1) ∈ ℝ) | |
4 | 2, 2, 3 | mp2an 691 | . . . 4 ⊢ (1 −ℝ 1) ∈ ℝ |
5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → (1 −ℝ 1) ∈ ℝ) |
6 | ax-icn 11243 | . . . . . . . 8 ⊢ i ∈ ℂ | |
7 | 6, 6 | mulcli 11297 | . . . . . . 7 ⊢ (i · i) ∈ ℂ |
8 | ax-1cn 11242 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
9 | 4 | recni 11304 | . . . . . . 7 ⊢ (1 −ℝ 1) ∈ ℂ |
10 | 7, 8, 9 | addassi 11300 | . . . . . 6 ⊢ (((i · i) + 1) + (1 −ℝ 1)) = ((i · i) + (1 + (1 −ℝ 1))) |
11 | repncan3 42359 | . . . . . . . 8 ⊢ ((1 ∈ ℝ ∧ 1 ∈ ℝ) → (1 + (1 −ℝ 1)) = 1) | |
12 | 2, 2, 11 | mp2an 691 | . . . . . . 7 ⊢ (1 + (1 −ℝ 1)) = 1 |
13 | 12 | oveq2i 7459 | . . . . . 6 ⊢ ((i · i) + (1 + (1 −ℝ 1))) = ((i · i) + 1) |
14 | 10, 13 | eqtri 2768 | . . . . 5 ⊢ (((i · i) + 1) + (1 −ℝ 1)) = ((i · i) + 1) |
15 | ax-i2m1 11252 | . . . . . 6 ⊢ ((i · i) + 1) = 0 | |
16 | 15 | oveq1i 7458 | . . . . 5 ⊢ (((i · i) + 1) + (1 −ℝ 1)) = (0 + (1 −ℝ 1)) |
17 | 14, 16, 15 | 3eqtr3i 2776 | . . . 4 ⊢ (0 + (1 −ℝ 1)) = 0 |
18 | 17 | a1i 11 | . . 3 ⊢ (⊤ → (0 + (1 −ℝ 1)) = 0) |
19 | 1, 5, 18 | reladdrsub 42361 | . 2 ⊢ (⊤ → (1 −ℝ 1) = (0 −ℝ 0)) |
20 | 19 | mptru 1544 | 1 ⊢ (1 −ℝ 1) = (0 −ℝ 0) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ⊤wtru 1538 ∈ wcel 2108 (class class class)co 7448 ℝcr 11183 0cc0 11184 1c1 11185 ici 11186 + caddc 11187 · cmul 11189 −ℝ cresub 42341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-addass 11249 ax-i2m1 11252 ax-1ne0 11253 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-resub 42342 |
This theorem is referenced by: sn-00idlem1 42374 sn-00idlem2 42375 remul02 42381 |
Copyright terms: Public domain | W3C validator |