![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > re1m1e0m0 | Structured version Visualization version GIF version |
Description: Equality of two left-additive identities. See resubidaddlid 41571. Uses ax-i2m1 11182. (Contributed by SN, 25-Dec-2023.) |
Ref | Expression |
---|---|
re1m1e0m0 | ⊢ (1 −ℝ 1) = (0 −ℝ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0red 11222 | . . 3 ⊢ (⊤ → 0 ∈ ℝ) | |
2 | 1re 11219 | . . . . 5 ⊢ 1 ∈ ℝ | |
3 | rersubcl 41554 | . . . . 5 ⊢ ((1 ∈ ℝ ∧ 1 ∈ ℝ) → (1 −ℝ 1) ∈ ℝ) | |
4 | 2, 2, 3 | mp2an 689 | . . . 4 ⊢ (1 −ℝ 1) ∈ ℝ |
5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → (1 −ℝ 1) ∈ ℝ) |
6 | ax-icn 11173 | . . . . . . . 8 ⊢ i ∈ ℂ | |
7 | 6, 6 | mulcli 11226 | . . . . . . 7 ⊢ (i · i) ∈ ℂ |
8 | ax-1cn 11172 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
9 | 4 | recni 11233 | . . . . . . 7 ⊢ (1 −ℝ 1) ∈ ℂ |
10 | 7, 8, 9 | addassi 11229 | . . . . . 6 ⊢ (((i · i) + 1) + (1 −ℝ 1)) = ((i · i) + (1 + (1 −ℝ 1))) |
11 | repncan3 41559 | . . . . . . . 8 ⊢ ((1 ∈ ℝ ∧ 1 ∈ ℝ) → (1 + (1 −ℝ 1)) = 1) | |
12 | 2, 2, 11 | mp2an 689 | . . . . . . 7 ⊢ (1 + (1 −ℝ 1)) = 1 |
13 | 12 | oveq2i 7423 | . . . . . 6 ⊢ ((i · i) + (1 + (1 −ℝ 1))) = ((i · i) + 1) |
14 | 10, 13 | eqtri 2759 | . . . . 5 ⊢ (((i · i) + 1) + (1 −ℝ 1)) = ((i · i) + 1) |
15 | ax-i2m1 11182 | . . . . . 6 ⊢ ((i · i) + 1) = 0 | |
16 | 15 | oveq1i 7422 | . . . . 5 ⊢ (((i · i) + 1) + (1 −ℝ 1)) = (0 + (1 −ℝ 1)) |
17 | 14, 16, 15 | 3eqtr3i 2767 | . . . 4 ⊢ (0 + (1 −ℝ 1)) = 0 |
18 | 17 | a1i 11 | . . 3 ⊢ (⊤ → (0 + (1 −ℝ 1)) = 0) |
19 | 1, 5, 18 | reladdrsub 41561 | . 2 ⊢ (⊤ → (1 −ℝ 1) = (0 −ℝ 0)) |
20 | 19 | mptru 1547 | 1 ⊢ (1 −ℝ 1) = (0 −ℝ 0) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ⊤wtru 1541 ∈ wcel 2105 (class class class)co 7412 ℝcr 11113 0cc0 11114 1c1 11115 ici 11116 + caddc 11117 · cmul 11119 −ℝ cresub 41541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-addass 11179 ax-i2m1 11182 ax-1ne0 11183 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11255 df-mnf 11256 df-ltxr 11258 df-resub 41542 |
This theorem is referenced by: sn-00idlem1 41574 sn-00idlem2 41575 remul02 41581 |
Copyright terms: Public domain | W3C validator |