Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > re1m1e0m0 | Structured version Visualization version GIF version |
Description: Equality of two left-additive identities. See resubidaddid1 40299. Uses ax-i2m1 10870. (Contributed by SN, 25-Dec-2023.) |
Ref | Expression |
---|---|
re1m1e0m0 | ⊢ (1 −ℝ 1) = (0 −ℝ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0red 10909 | . . 3 ⊢ (⊤ → 0 ∈ ℝ) | |
2 | 1re 10906 | . . . . 5 ⊢ 1 ∈ ℝ | |
3 | rersubcl 40282 | . . . . 5 ⊢ ((1 ∈ ℝ ∧ 1 ∈ ℝ) → (1 −ℝ 1) ∈ ℝ) | |
4 | 2, 2, 3 | mp2an 688 | . . . 4 ⊢ (1 −ℝ 1) ∈ ℝ |
5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → (1 −ℝ 1) ∈ ℝ) |
6 | ax-icn 10861 | . . . . . . . 8 ⊢ i ∈ ℂ | |
7 | 6, 6 | mulcli 10913 | . . . . . . 7 ⊢ (i · i) ∈ ℂ |
8 | ax-1cn 10860 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
9 | 4 | recni 10920 | . . . . . . 7 ⊢ (1 −ℝ 1) ∈ ℂ |
10 | 7, 8, 9 | addassi 10916 | . . . . . 6 ⊢ (((i · i) + 1) + (1 −ℝ 1)) = ((i · i) + (1 + (1 −ℝ 1))) |
11 | repncan3 40287 | . . . . . . . 8 ⊢ ((1 ∈ ℝ ∧ 1 ∈ ℝ) → (1 + (1 −ℝ 1)) = 1) | |
12 | 2, 2, 11 | mp2an 688 | . . . . . . 7 ⊢ (1 + (1 −ℝ 1)) = 1 |
13 | 12 | oveq2i 7266 | . . . . . 6 ⊢ ((i · i) + (1 + (1 −ℝ 1))) = ((i · i) + 1) |
14 | 10, 13 | eqtri 2766 | . . . . 5 ⊢ (((i · i) + 1) + (1 −ℝ 1)) = ((i · i) + 1) |
15 | ax-i2m1 10870 | . . . . . 6 ⊢ ((i · i) + 1) = 0 | |
16 | 15 | oveq1i 7265 | . . . . 5 ⊢ (((i · i) + 1) + (1 −ℝ 1)) = (0 + (1 −ℝ 1)) |
17 | 14, 16, 15 | 3eqtr3i 2774 | . . . 4 ⊢ (0 + (1 −ℝ 1)) = 0 |
18 | 17 | a1i 11 | . . 3 ⊢ (⊤ → (0 + (1 −ℝ 1)) = 0) |
19 | 1, 5, 18 | reladdrsub 40289 | . 2 ⊢ (⊤ → (1 −ℝ 1) = (0 −ℝ 0)) |
20 | 19 | mptru 1546 | 1 ⊢ (1 −ℝ 1) = (0 −ℝ 0) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ⊤wtru 1540 ∈ wcel 2108 (class class class)co 7255 ℝcr 10801 0cc0 10802 1c1 10803 ici 10804 + caddc 10805 · cmul 10807 −ℝ cresub 40269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-addass 10867 ax-i2m1 10870 ax-1ne0 10871 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-resub 40270 |
This theorem is referenced by: sn-00idlem1 40302 sn-00idlem2 40303 remul02 40309 |
Copyright terms: Public domain | W3C validator |