Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  re1m1e0m0 Structured version   Visualization version   GIF version

Theorem re1m1e0m0 42358
Description: Equality of two left-additive identities. See resubidaddlid 42356. Uses ax-i2m1 11112. (Contributed by SN, 25-Dec-2023.)
Assertion
Ref Expression
re1m1e0m0 (1 − 1) = (0 − 0)

Proof of Theorem re1m1e0m0
StepHypRef Expression
1 0red 11153 . . 3 (⊤ → 0 ∈ ℝ)
2 1re 11150 . . . . 5 1 ∈ ℝ
3 rersubcl 42339 . . . . 5 ((1 ∈ ℝ ∧ 1 ∈ ℝ) → (1 − 1) ∈ ℝ)
42, 2, 3mp2an 692 . . . 4 (1 − 1) ∈ ℝ
54a1i 11 . . 3 (⊤ → (1 − 1) ∈ ℝ)
6 ax-icn 11103 . . . . . . . 8 i ∈ ℂ
76, 6mulcli 11157 . . . . . . 7 (i · i) ∈ ℂ
8 ax-1cn 11102 . . . . . . 7 1 ∈ ℂ
94recni 11164 . . . . . . 7 (1 − 1) ∈ ℂ
107, 8, 9addassi 11160 . . . . . 6 (((i · i) + 1) + (1 − 1)) = ((i · i) + (1 + (1 − 1)))
11 repncan3 42344 . . . . . . . 8 ((1 ∈ ℝ ∧ 1 ∈ ℝ) → (1 + (1 − 1)) = 1)
122, 2, 11mp2an 692 . . . . . . 7 (1 + (1 − 1)) = 1
1312oveq2i 7380 . . . . . 6 ((i · i) + (1 + (1 − 1))) = ((i · i) + 1)
1410, 13eqtri 2752 . . . . 5 (((i · i) + 1) + (1 − 1)) = ((i · i) + 1)
15 ax-i2m1 11112 . . . . . 6 ((i · i) + 1) = 0
1615oveq1i 7379 . . . . 5 (((i · i) + 1) + (1 − 1)) = (0 + (1 − 1))
1714, 16, 153eqtr3i 2760 . . . 4 (0 + (1 − 1)) = 0
1817a1i 11 . . 3 (⊤ → (0 + (1 − 1)) = 0)
191, 5, 18reladdrsub 42346 . 2 (⊤ → (1 − 1) = (0 − 0))
2019mptru 1547 1 (1 − 1) = (0 − 0)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wtru 1541  wcel 2109  (class class class)co 7369  cr 11043  0cc0 11044  1c1 11045  ici 11046   + caddc 11047   · cmul 11049   cresub 42326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-addass 11109  ax-i2m1 11112  ax-1ne0 11113  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-ltxr 11189  df-resub 42327
This theorem is referenced by:  sn-00idlem1  42359  sn-00idlem2  42360  remul02  42366
  Copyright terms: Public domain W3C validator