Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  re1m1e0m0 Structured version   Visualization version   GIF version

Theorem re1m1e0m0 40380
Description: Equality of two left-additive identities. See resubidaddid1 40378. Uses ax-i2m1 10939. (Contributed by SN, 25-Dec-2023.)
Assertion
Ref Expression
re1m1e0m0 (1 − 1) = (0 − 0)

Proof of Theorem re1m1e0m0
StepHypRef Expression
1 0red 10978 . . 3 (⊤ → 0 ∈ ℝ)
2 1re 10975 . . . . 5 1 ∈ ℝ
3 rersubcl 40361 . . . . 5 ((1 ∈ ℝ ∧ 1 ∈ ℝ) → (1 − 1) ∈ ℝ)
42, 2, 3mp2an 689 . . . 4 (1 − 1) ∈ ℝ
54a1i 11 . . 3 (⊤ → (1 − 1) ∈ ℝ)
6 ax-icn 10930 . . . . . . . 8 i ∈ ℂ
76, 6mulcli 10982 . . . . . . 7 (i · i) ∈ ℂ
8 ax-1cn 10929 . . . . . . 7 1 ∈ ℂ
94recni 10989 . . . . . . 7 (1 − 1) ∈ ℂ
107, 8, 9addassi 10985 . . . . . 6 (((i · i) + 1) + (1 − 1)) = ((i · i) + (1 + (1 − 1)))
11 repncan3 40366 . . . . . . . 8 ((1 ∈ ℝ ∧ 1 ∈ ℝ) → (1 + (1 − 1)) = 1)
122, 2, 11mp2an 689 . . . . . . 7 (1 + (1 − 1)) = 1
1312oveq2i 7286 . . . . . 6 ((i · i) + (1 + (1 − 1))) = ((i · i) + 1)
1410, 13eqtri 2766 . . . . 5 (((i · i) + 1) + (1 − 1)) = ((i · i) + 1)
15 ax-i2m1 10939 . . . . . 6 ((i · i) + 1) = 0
1615oveq1i 7285 . . . . 5 (((i · i) + 1) + (1 − 1)) = (0 + (1 − 1))
1714, 16, 153eqtr3i 2774 . . . 4 (0 + (1 − 1)) = 0
1817a1i 11 . . 3 (⊤ → (0 + (1 − 1)) = 0)
191, 5, 18reladdrsub 40368 . 2 (⊤ → (1 − 1) = (0 − 0))
2019mptru 1546 1 (1 − 1) = (0 − 0)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wtru 1540  wcel 2106  (class class class)co 7275  cr 10870  0cc0 10871  1c1 10872  ici 10873   + caddc 10874   · cmul 10876   cresub 40348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-addass 10936  ax-i2m1 10939  ax-1ne0 10940  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-ltxr 11014  df-resub 40349
This theorem is referenced by:  sn-00idlem1  40381  sn-00idlem2  40382  remul02  40388
  Copyright terms: Public domain W3C validator