| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ixi | Structured version Visualization version GIF version | ||
| Description: i times itself is minus 1. (Contributed by NM, 6-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| Ref | Expression |
|---|---|
| ixi | ⊢ (i · i) = -1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-neg 11350 | . 2 ⊢ -1 = (0 − 1) | |
| 2 | ax-i2m1 11077 | . . 3 ⊢ ((i · i) + 1) = 0 | |
| 3 | 0cn 11107 | . . . 4 ⊢ 0 ∈ ℂ | |
| 4 | ax-1cn 11067 | . . . 4 ⊢ 1 ∈ ℂ | |
| 5 | ax-icn 11068 | . . . . 5 ⊢ i ∈ ℂ | |
| 6 | 5, 5 | mulcli 11122 | . . . 4 ⊢ (i · i) ∈ ℂ |
| 7 | 3, 4, 6 | subadd2i 11452 | . . 3 ⊢ ((0 − 1) = (i · i) ↔ ((i · i) + 1) = 0) |
| 8 | 2, 7 | mpbir 231 | . 2 ⊢ (0 − 1) = (i · i) |
| 9 | 1, 8 | eqtr2i 2753 | 1 ⊢ (i · i) = -1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7349 0cc0 11009 1c1 11010 ici 11011 + caddc 11012 · cmul 11014 − cmin 11347 -cneg 11348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-ltxr 11154 df-sub 11349 df-neg 11350 |
| This theorem is referenced by: recextlem1 11750 inelr 12118 cju 12124 irec 14108 i2 14109 crre 15021 remim 15024 remullem 15035 sqrtneglem 15173 absi 15193 sinhval 16063 coshval 16064 cosadd 16074 absefib 16107 efieq1re 16108 demoivreALT 16110 ncvspi 25054 cphipval2 25139 itgmulc2 25733 tanarg 26526 atandm2 26785 efiasin 26796 asinsinlem 26799 asinsin 26800 asin1 26802 efiatan 26820 atanlogsublem 26823 efiatan2 26825 2efiatan 26826 tanatan 26827 atantan 26831 atans2 26839 dvatan 26843 log2cnv 26852 nvpi 30611 ipasslem10 30783 polid2i 31101 lnophmlem2 31961 1nei 32680 constrmulcl 33738 iexpire 35708 itgmulc2nc 37668 dvasin 37684 sqrtcval 43614 |
| Copyright terms: Public domain | W3C validator |