| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ixi | Structured version Visualization version GIF version | ||
| Description: i times itself is minus 1. (Contributed by NM, 6-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| Ref | Expression |
|---|---|
| ixi | ⊢ (i · i) = -1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-neg 11415 | . 2 ⊢ -1 = (0 − 1) | |
| 2 | ax-i2m1 11143 | . . 3 ⊢ ((i · i) + 1) = 0 | |
| 3 | 0cn 11173 | . . . 4 ⊢ 0 ∈ ℂ | |
| 4 | ax-1cn 11133 | . . . 4 ⊢ 1 ∈ ℂ | |
| 5 | ax-icn 11134 | . . . . 5 ⊢ i ∈ ℂ | |
| 6 | 5, 5 | mulcli 11188 | . . . 4 ⊢ (i · i) ∈ ℂ |
| 7 | 3, 4, 6 | subadd2i 11517 | . . 3 ⊢ ((0 − 1) = (i · i) ↔ ((i · i) + 1) = 0) |
| 8 | 2, 7 | mpbir 231 | . 2 ⊢ (0 − 1) = (i · i) |
| 9 | 1, 8 | eqtr2i 2754 | 1 ⊢ (i · i) = -1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7390 0cc0 11075 1c1 11076 ici 11077 + caddc 11078 · cmul 11080 − cmin 11412 -cneg 11413 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 df-sub 11414 df-neg 11415 |
| This theorem is referenced by: recextlem1 11815 inelr 12183 cju 12189 irec 14173 i2 14174 crre 15087 remim 15090 remullem 15101 sqrtneglem 15239 absi 15259 sinhval 16129 coshval 16130 cosadd 16140 absefib 16173 efieq1re 16174 demoivreALT 16176 ncvspi 25063 cphipval2 25148 itgmulc2 25742 tanarg 26535 atandm2 26794 efiasin 26805 asinsinlem 26808 asinsin 26809 asin1 26811 efiatan 26829 atanlogsublem 26832 efiatan2 26834 2efiatan 26835 tanatan 26836 atantan 26840 atans2 26848 dvatan 26852 log2cnv 26861 nvpi 30603 ipasslem10 30775 polid2i 31093 lnophmlem2 31953 1nei 32667 constrmulcl 33768 iexpire 35729 itgmulc2nc 37689 dvasin 37705 sqrtcval 43637 |
| Copyright terms: Public domain | W3C validator |