Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ixi | Structured version Visualization version GIF version |
Description: i times itself is minus 1. (Contributed by NM, 6-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
Ref | Expression |
---|---|
ixi | ⊢ (i · i) = -1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-neg 11310 | . 2 ⊢ -1 = (0 − 1) | |
2 | ax-i2m1 11041 | . . 3 ⊢ ((i · i) + 1) = 0 | |
3 | 0cn 11069 | . . . 4 ⊢ 0 ∈ ℂ | |
4 | ax-1cn 11031 | . . . 4 ⊢ 1 ∈ ℂ | |
5 | ax-icn 11032 | . . . . 5 ⊢ i ∈ ℂ | |
6 | 5, 5 | mulcli 11084 | . . . 4 ⊢ (i · i) ∈ ℂ |
7 | 3, 4, 6 | subadd2i 11411 | . . 3 ⊢ ((0 − 1) = (i · i) ↔ ((i · i) + 1) = 0) |
8 | 2, 7 | mpbir 230 | . 2 ⊢ (0 − 1) = (i · i) |
9 | 1, 8 | eqtr2i 2765 | 1 ⊢ (i · i) = -1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 (class class class)co 7338 0cc0 10973 1c1 10974 ici 10975 + caddc 10976 · cmul 10978 − cmin 11307 -cneg 11308 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 ax-resscn 11030 ax-1cn 11031 ax-icn 11032 ax-addcl 11033 ax-addrcl 11034 ax-mulcl 11035 ax-mulrcl 11036 ax-mulcom 11037 ax-addass 11038 ax-mulass 11039 ax-distr 11040 ax-i2m1 11041 ax-1ne0 11042 ax-1rid 11043 ax-rnegex 11044 ax-rrecex 11045 ax-cnre 11046 ax-pre-lttri 11047 ax-pre-lttrn 11048 ax-pre-ltadd 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-br 5094 df-opab 5156 df-mpt 5177 df-id 5519 df-po 5533 df-so 5534 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-riota 7294 df-ov 7341 df-oprab 7342 df-mpo 7343 df-er 8570 df-en 8806 df-dom 8807 df-sdom 8808 df-pnf 11113 df-mnf 11114 df-ltxr 11116 df-sub 11309 df-neg 11310 |
This theorem is referenced by: recextlem1 11707 inelr 12065 cju 12071 irec 14020 i2 14021 crre 14925 remim 14928 remullem 14939 sqrtneglem 15078 absi 15098 sinhval 15963 coshval 15964 cosadd 15974 absefib 16007 efieq1re 16008 demoivreALT 16010 ncvspi 24427 cphipval2 24512 itgmulc2 25105 tanarg 25881 atandm2 26134 efiasin 26145 asinsinlem 26148 asinsin 26149 asin1 26151 efiatan 26169 atanlogsublem 26172 efiatan2 26174 2efiatan 26175 tanatan 26176 atantan 26180 atans2 26188 dvatan 26192 log2cnv 26201 nvpi 29318 ipasslem10 29490 polid2i 29808 lnophmlem2 30668 1nei 31358 iexpire 33993 itgmulc2nc 36001 dvasin 36017 sqrtcval 41622 |
Copyright terms: Public domain | W3C validator |