| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ixi | Structured version Visualization version GIF version | ||
| Description: i times itself is minus 1. (Contributed by NM, 6-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| Ref | Expression |
|---|---|
| ixi | ⊢ (i · i) = -1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-neg 11469 | . 2 ⊢ -1 = (0 − 1) | |
| 2 | ax-i2m1 11197 | . . 3 ⊢ ((i · i) + 1) = 0 | |
| 3 | 0cn 11227 | . . . 4 ⊢ 0 ∈ ℂ | |
| 4 | ax-1cn 11187 | . . . 4 ⊢ 1 ∈ ℂ | |
| 5 | ax-icn 11188 | . . . . 5 ⊢ i ∈ ℂ | |
| 6 | 5, 5 | mulcli 11242 | . . . 4 ⊢ (i · i) ∈ ℂ |
| 7 | 3, 4, 6 | subadd2i 11571 | . . 3 ⊢ ((0 − 1) = (i · i) ↔ ((i · i) + 1) = 0) |
| 8 | 2, 7 | mpbir 231 | . 2 ⊢ (0 − 1) = (i · i) |
| 9 | 1, 8 | eqtr2i 2759 | 1 ⊢ (i · i) = -1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7405 0cc0 11129 1c1 11130 ici 11131 + caddc 11132 · cmul 11134 − cmin 11466 -cneg 11467 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-ltxr 11274 df-sub 11468 df-neg 11469 |
| This theorem is referenced by: recextlem1 11867 inelr 12230 cju 12236 irec 14219 i2 14220 crre 15133 remim 15136 remullem 15147 sqrtneglem 15285 absi 15305 sinhval 16172 coshval 16173 cosadd 16183 absefib 16216 efieq1re 16217 demoivreALT 16219 ncvspi 25108 cphipval2 25193 itgmulc2 25787 tanarg 26580 atandm2 26839 efiasin 26850 asinsinlem 26853 asinsin 26854 asin1 26856 efiatan 26874 atanlogsublem 26877 efiatan2 26879 2efiatan 26880 tanatan 26881 atantan 26885 atans2 26893 dvatan 26897 log2cnv 26906 nvpi 30648 ipasslem10 30820 polid2i 31138 lnophmlem2 31998 1nei 32714 constrmulcl 33805 iexpire 35752 itgmulc2nc 37712 dvasin 37728 sqrtcval 43665 |
| Copyright terms: Public domain | W3C validator |