| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ixi | Structured version Visualization version GIF version | ||
| Description: i times itself is minus 1. (Contributed by NM, 6-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| Ref | Expression |
|---|---|
| ixi | ⊢ (i · i) = -1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-neg 11342 | . 2 ⊢ -1 = (0 − 1) | |
| 2 | ax-i2m1 11069 | . . 3 ⊢ ((i · i) + 1) = 0 | |
| 3 | 0cn 11099 | . . . 4 ⊢ 0 ∈ ℂ | |
| 4 | ax-1cn 11059 | . . . 4 ⊢ 1 ∈ ℂ | |
| 5 | ax-icn 11060 | . . . . 5 ⊢ i ∈ ℂ | |
| 6 | 5, 5 | mulcli 11114 | . . . 4 ⊢ (i · i) ∈ ℂ |
| 7 | 3, 4, 6 | subadd2i 11444 | . . 3 ⊢ ((0 − 1) = (i · i) ↔ ((i · i) + 1) = 0) |
| 8 | 2, 7 | mpbir 231 | . 2 ⊢ (0 − 1) = (i · i) |
| 9 | 1, 8 | eqtr2i 2755 | 1 ⊢ (i · i) = -1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 (class class class)co 7341 0cc0 11001 1c1 11002 ici 11003 + caddc 11004 · cmul 11006 − cmin 11339 -cneg 11340 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-po 5519 df-so 5520 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-ltxr 11146 df-sub 11341 df-neg 11342 |
| This theorem is referenced by: recextlem1 11742 inelr 12110 cju 12116 irec 14103 i2 14104 crre 15016 remim 15019 remullem 15030 sqrtneglem 15168 absi 15188 sinhval 16058 coshval 16059 cosadd 16069 absefib 16102 efieq1re 16103 demoivreALT 16105 ncvspi 25078 cphipval2 25163 itgmulc2 25757 tanarg 26550 atandm2 26809 efiasin 26820 asinsinlem 26823 asinsin 26824 asin1 26826 efiatan 26844 atanlogsublem 26847 efiatan2 26849 2efiatan 26850 tanatan 26851 atantan 26855 atans2 26863 dvatan 26867 log2cnv 26876 nvpi 30639 ipasslem10 30811 polid2i 31129 lnophmlem2 31989 1nei 32712 constrmulcl 33776 iexpire 35771 itgmulc2nc 37728 dvasin 37744 sqrtcval 43674 |
| Copyright terms: Public domain | W3C validator |