| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ixi | Structured version Visualization version GIF version | ||
| Description: i times itself is minus 1. (Contributed by NM, 6-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| Ref | Expression |
|---|---|
| ixi | ⊢ (i · i) = -1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-neg 11408 | . 2 ⊢ -1 = (0 − 1) | |
| 2 | ax-i2m1 11136 | . . 3 ⊢ ((i · i) + 1) = 0 | |
| 3 | 0cn 11166 | . . . 4 ⊢ 0 ∈ ℂ | |
| 4 | ax-1cn 11126 | . . . 4 ⊢ 1 ∈ ℂ | |
| 5 | ax-icn 11127 | . . . . 5 ⊢ i ∈ ℂ | |
| 6 | 5, 5 | mulcli 11181 | . . . 4 ⊢ (i · i) ∈ ℂ |
| 7 | 3, 4, 6 | subadd2i 11510 | . . 3 ⊢ ((0 − 1) = (i · i) ↔ ((i · i) + 1) = 0) |
| 8 | 2, 7 | mpbir 231 | . 2 ⊢ (0 − 1) = (i · i) |
| 9 | 1, 8 | eqtr2i 2753 | 1 ⊢ (i · i) = -1 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7387 0cc0 11068 1c1 11069 ici 11070 + caddc 11071 · cmul 11073 − cmin 11405 -cneg 11406 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 df-sub 11407 df-neg 11408 |
| This theorem is referenced by: recextlem1 11808 inelr 12176 cju 12182 irec 14166 i2 14167 crre 15080 remim 15083 remullem 15094 sqrtneglem 15232 absi 15252 sinhval 16122 coshval 16123 cosadd 16133 absefib 16166 efieq1re 16167 demoivreALT 16169 ncvspi 25056 cphipval2 25141 itgmulc2 25735 tanarg 26528 atandm2 26787 efiasin 26798 asinsinlem 26801 asinsin 26802 asin1 26804 efiatan 26822 atanlogsublem 26825 efiatan2 26827 2efiatan 26828 tanatan 26829 atantan 26833 atans2 26841 dvatan 26845 log2cnv 26854 nvpi 30596 ipasslem10 30768 polid2i 31086 lnophmlem2 31946 1nei 32660 constrmulcl 33761 iexpire 35722 itgmulc2nc 37682 dvasin 37698 sqrtcval 43630 |
| Copyright terms: Public domain | W3C validator |