Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-inelr Structured version   Visualization version   GIF version

Theorem sn-inelr 39577
Description: inelr 11619 without ax-mulcom 10594. (Contributed by SN, 1-Jun-2024.)
Assertion
Ref Expression
sn-inelr ¬ i ∈ ℝ

Proof of Theorem sn-inelr
StepHypRef Expression
1 0re 10636 . . 3 0 ∈ ℝ
2 lttri4 10718 . . 3 ((i ∈ ℝ ∧ 0 ∈ ℝ) → (i < 0 ∨ i = 0 ∨ 0 < i))
31, 2mpan2 690 . 2 (i ∈ ℝ → (i < 0 ∨ i = 0 ∨ 0 < i))
4 reneg1lt0 39576 . . . . 5 (0 − 1) < 0
5 1re 10634 . . . . . . 7 1 ∈ ℝ
6 rernegcl 39496 . . . . . . 7 (1 ∈ ℝ → (0 − 1) ∈ ℝ)
75, 6ax-mp 5 . . . . . 6 (0 − 1) ∈ ℝ
87, 1ltnsymi 10752 . . . . 5 ((0 − 1) < 0 → ¬ 0 < (0 − 1))
94, 8ax-mp 5 . . . 4 ¬ 0 < (0 − 1)
10 relt0neg1 39567 . . . . 5 (i ∈ ℝ → (i < 0 ↔ 0 < (0 − i)))
11 rernegcl 39496 . . . . . . . 8 (i ∈ ℝ → (0 − i) ∈ ℝ)
12 mulgt0 10711 . . . . . . . . 9 ((((0 − i) ∈ ℝ ∧ 0 < (0 − i)) ∧ ((0 − i) ∈ ℝ ∧ 0 < (0 − i))) → 0 < ((0 − i) · (0 − i)))
1312anidms 570 . . . . . . . 8 (((0 − i) ∈ ℝ ∧ 0 < (0 − i)) → 0 < ((0 − i) · (0 − i)))
1411, 13sylan 583 . . . . . . 7 ((i ∈ ℝ ∧ 0 < (0 − i)) → 0 < ((0 − i) · (0 − i)))
15 elre0re 39449 . . . . . . . . . . 11 (i ∈ ℝ → 0 ∈ ℝ)
16 id 22 . . . . . . . . . . 11 (i ∈ ℝ → i ∈ ℝ)
17 resubdi 39521 . . . . . . . . . . 11 (((0 − i) ∈ ℝ ∧ 0 ∈ ℝ ∧ i ∈ ℝ) → ((0 − i) · (0 − i)) = (((0 − i) · 0) − ((0 − i) · i)))
1811, 15, 16, 17syl3anc 1368 . . . . . . . . . 10 (i ∈ ℝ → ((0 − i) · (0 − i)) = (((0 − i) · 0) − ((0 − i) · i)))
19 remul01 39532 . . . . . . . . . . . 12 ((0 − i) ∈ ℝ → ((0 − i) · 0) = 0)
2011, 19syl 17 . . . . . . . . . . 11 (i ∈ ℝ → ((0 − i) · 0) = 0)
2116, 16remulcld 10664 . . . . . . . . . . . . . . 15 (i ∈ ℝ → (i · i) ∈ ℝ)
2216, 21remulcld 10664 . . . . . . . . . . . . . 14 (i ∈ ℝ → (i · (i · i)) ∈ ℝ)
23 ipiiie0 39561 . . . . . . . . . . . . . . 15 (i + (i · (i · i))) = 0
24 renegadd 39497 . . . . . . . . . . . . . . 15 ((i ∈ ℝ ∧ (i · (i · i)) ∈ ℝ) → ((0 − i) = (i · (i · i)) ↔ (i + (i · (i · i))) = 0))
2523, 24mpbiri 261 . . . . . . . . . . . . . 14 ((i ∈ ℝ ∧ (i · (i · i)) ∈ ℝ) → (0 − i) = (i · (i · i)))
2622, 25mpdan 686 . . . . . . . . . . . . 13 (i ∈ ℝ → (0 − i) = (i · (i · i)))
2726oveq1d 7154 . . . . . . . . . . . 12 (i ∈ ℝ → ((0 − i) · i) = ((i · (i · i)) · i))
28 ax-icn 10589 . . . . . . . . . . . . . . . 16 i ∈ ℂ
2928, 28, 28mulassi 10645 . . . . . . . . . . . . . . 15 ((i · i) · i) = (i · (i · i))
3029oveq1i 7149 . . . . . . . . . . . . . 14 (((i · i) · i) · i) = ((i · (i · i)) · i)
3128, 28mulcli 10641 . . . . . . . . . . . . . . 15 (i · i) ∈ ℂ
3231, 28, 28mulassi 10645 . . . . . . . . . . . . . 14 (((i · i) · i) · i) = ((i · i) · (i · i))
3330, 32eqtr3i 2826 . . . . . . . . . . . . 13 ((i · (i · i)) · i) = ((i · i) · (i · i))
3433a1i 11 . . . . . . . . . . . 12 (i ∈ ℝ → ((i · (i · i)) · i) = ((i · i) · (i · i)))
35 rei4 39547 . . . . . . . . . . . . 13 ((i · i) · (i · i)) = 1
3635a1i 11 . . . . . . . . . . . 12 (i ∈ ℝ → ((i · i) · (i · i)) = 1)
3727, 34, 363eqtrd 2840 . . . . . . . . . . 11 (i ∈ ℝ → ((0 − i) · i) = 1)
3820, 37oveq12d 7157 . . . . . . . . . 10 (i ∈ ℝ → (((0 − i) · 0) − ((0 − i) · i)) = (0 − 1))
3918, 38eqtrd 2836 . . . . . . . . 9 (i ∈ ℝ → ((0 − i) · (0 − i)) = (0 − 1))
4039breq2d 5045 . . . . . . . 8 (i ∈ ℝ → (0 < ((0 − i) · (0 − i)) ↔ 0 < (0 − 1)))
4140adantr 484 . . . . . . 7 ((i ∈ ℝ ∧ 0 < (0 − i)) → (0 < ((0 − i) · (0 − i)) ↔ 0 < (0 − 1)))
4214, 41mpbid 235 . . . . . 6 ((i ∈ ℝ ∧ 0 < (0 − i)) → 0 < (0 − 1))
4342ex 416 . . . . 5 (i ∈ ℝ → (0 < (0 − i) → 0 < (0 − 1)))
4410, 43sylbid 243 . . . 4 (i ∈ ℝ → (i < 0 → 0 < (0 − 1)))
459, 44mtoi 202 . . 3 (i ∈ ℝ → ¬ i < 0)
46 0ne1 11700 . . . . . 6 0 ≠ 1
4746neii 2992 . . . . 5 ¬ 0 = 1
48 oveq12 7148 . . . . . . . 8 ((i = 0 ∧ i = 0) → (i · i) = (0 · 0))
4948anidms 570 . . . . . . 7 (i = 0 → (i · i) = (0 · 0))
5049oveq1d 7154 . . . . . 6 (i = 0 → ((i · i) + 1) = ((0 · 0) + 1))
51 ax-i2m1 10598 . . . . . 6 ((i · i) + 1) = 0
52 remul02 39530 . . . . . . . . 9 (0 ∈ ℝ → (0 · 0) = 0)
531, 52ax-mp 5 . . . . . . . 8 (0 · 0) = 0
5453oveq1i 7149 . . . . . . 7 ((0 · 0) + 1) = (0 + 1)
55 readdid2 39528 . . . . . . . 8 (1 ∈ ℝ → (0 + 1) = 1)
565, 55ax-mp 5 . . . . . . 7 (0 + 1) = 1
5754, 56eqtri 2824 . . . . . 6 ((0 · 0) + 1) = 1
5850, 51, 573eqtr3g 2859 . . . . 5 (i = 0 → 0 = 1)
5947, 58mto 200 . . . 4 ¬ i = 0
6059a1i 11 . . 3 (i ∈ ℝ → ¬ i = 0)
61 mulgt0 10711 . . . . . . 7 (((i ∈ ℝ ∧ 0 < i) ∧ (i ∈ ℝ ∧ 0 < i)) → 0 < (i · i))
6261anidms 570 . . . . . 6 ((i ∈ ℝ ∧ 0 < i) → 0 < (i · i))
63 reixi 39546 . . . . . 6 (i · i) = (0 − 1)
6462, 63breqtrdi 5074 . . . . 5 ((i ∈ ℝ ∧ 0 < i) → 0 < (0 − 1))
6564ex 416 . . . 4 (i ∈ ℝ → (0 < i → 0 < (0 − 1)))
669, 65mtoi 202 . . 3 (i ∈ ℝ → ¬ 0 < i)
67 3ioran 1103 . . 3 (¬ (i < 0 ∨ i = 0 ∨ 0 < i) ↔ (¬ i < 0 ∧ ¬ i = 0 ∧ ¬ 0 < i))
6845, 60, 66, 67syl3anbrc 1340 . 2 (i ∈ ℝ → ¬ (i < 0 ∨ i = 0 ∨ 0 < i))
693, 68pm2.65i 197 1 ¬ i ∈ ℝ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209  wa 399  w3o 1083   = wceq 1538  wcel 2112   class class class wbr 5033  (class class class)co 7139  cr 10529  0cc0 10530  1c1 10531  ici 10532   + caddc 10533   · cmul 10535   < clt 10668   cresub 39490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5428  df-po 5442  df-so 5443  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-ltxr 10673  df-2 11692  df-3 11693  df-resub 39491
This theorem is referenced by:  itrere  39578  retire  39579
  Copyright terms: Public domain W3C validator