Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reixi Structured version   Visualization version   GIF version

Theorem reixi 41238
Description: ixi 11838 without ax-mulcom 11169. (Contributed by SN, 5-May-2024.)
Assertion
Ref Expression
reixi (i · i) = (0 − 1)

Proof of Theorem reixi
StepHypRef Expression
1 ax-i2m1 11173 . . . 4 ((i · i) + 1) = 0
2 1re 11209 . . . . 5 1 ∈ ℝ
3 renegid2 41229 . . . . 5 (1 ∈ ℝ → ((0 − 1) + 1) = 0)
42, 3ax-mp 5 . . . 4 ((0 − 1) + 1) = 0
51, 4eqtr4i 2764 . . 3 ((i · i) + 1) = ((0 − 1) + 1)
6 ax-icn 11164 . . . . . 6 i ∈ ℂ
76, 6mulcli 11216 . . . . 5 (i · i) ∈ ℂ
87a1i 11 . . . 4 (⊤ → (i · i) ∈ ℂ)
9 rernegcl 41187 . . . . . 6 (1 ∈ ℝ → (0 − 1) ∈ ℝ)
109recnd 11237 . . . . 5 (1 ∈ ℝ → (0 − 1) ∈ ℂ)
112, 10mp1i 13 . . . 4 (⊤ → (0 − 1) ∈ ℂ)
12 1cnd 11204 . . . 4 (⊤ → 1 ∈ ℂ)
138, 11, 12sn-addcan2d 41237 . . 3 (⊤ → (((i · i) + 1) = ((0 − 1) + 1) ↔ (i · i) = (0 − 1)))
145, 13mpbii 232 . 2 (⊤ → (i · i) = (0 − 1))
1514mptru 1549 1 (i · i) = (0 − 1)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  wtru 1543  wcel 2107  (class class class)co 7403  cc 11103  cr 11104  0cc0 11105  1c1 11106  ici 11107   + caddc 11108   · cmul 11110   cresub 41181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5297  ax-nul 5304  ax-pow 5361  ax-pr 5425  ax-un 7719  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4321  df-if 4527  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4907  df-br 5147  df-opab 5209  df-mpt 5230  df-id 5572  df-po 5586  df-so 5587  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-iota 6491  df-fun 6541  df-fn 6542  df-f 6543  df-f1 6544  df-fo 6545  df-f1o 6546  df-fv 6547  df-riota 7359  df-ov 7406  df-oprab 7407  df-mpo 7408  df-er 8698  df-en 8935  df-dom 8936  df-sdom 8937  df-pnf 11245  df-mnf 11246  df-ltxr 11248  df-2 12270  df-3 12271  df-resub 41182
This theorem is referenced by:  rei4  41239  ipiiie0  41253  sn-0tie0  41255  sn-inelr  41281
  Copyright terms: Public domain W3C validator