| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > reixi | Structured version Visualization version GIF version | ||
| Description: ixi 11783 without ax-mulcom 11108. (Contributed by SN, 5-May-2024.) |
| Ref | Expression |
|---|---|
| reixi | ⊢ (i · i) = (0 −ℝ 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-i2m1 11112 | . . . 4 ⊢ ((i · i) + 1) = 0 | |
| 2 | 1re 11150 | . . . . 5 ⊢ 1 ∈ ℝ | |
| 3 | renegid2 42375 | . . . . 5 ⊢ (1 ∈ ℝ → ((0 −ℝ 1) + 1) = 0) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ((0 −ℝ 1) + 1) = 0 |
| 5 | 1, 4 | eqtr4i 2755 | . . 3 ⊢ ((i · i) + 1) = ((0 −ℝ 1) + 1) |
| 6 | ax-icn 11103 | . . . . . 6 ⊢ i ∈ ℂ | |
| 7 | 6, 6 | mulcli 11157 | . . . . 5 ⊢ (i · i) ∈ ℂ |
| 8 | 7 | a1i 11 | . . . 4 ⊢ (⊤ → (i · i) ∈ ℂ) |
| 9 | rernegcl 42332 | . . . . . 6 ⊢ (1 ∈ ℝ → (0 −ℝ 1) ∈ ℝ) | |
| 10 | 9 | recnd 11178 | . . . . 5 ⊢ (1 ∈ ℝ → (0 −ℝ 1) ∈ ℂ) |
| 11 | 2, 10 | mp1i 13 | . . . 4 ⊢ (⊤ → (0 −ℝ 1) ∈ ℂ) |
| 12 | 1cnd 11145 | . . . 4 ⊢ (⊤ → 1 ∈ ℂ) | |
| 13 | 8, 11, 12 | sn-addcan2d 42383 | . . 3 ⊢ (⊤ → (((i · i) + 1) = ((0 −ℝ 1) + 1) ↔ (i · i) = (0 −ℝ 1))) |
| 14 | 5, 13 | mpbii 233 | . 2 ⊢ (⊤ → (i · i) = (0 −ℝ 1)) |
| 15 | 14 | mptru 1547 | 1 ⊢ (i · i) = (0 −ℝ 1) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 (class class class)co 7369 ℂcc 11042 ℝcr 11043 0cc0 11044 1c1 11045 ici 11046 + caddc 11047 · cmul 11049 −ℝ cresub 42326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-ltxr 11189 df-2 12225 df-3 12226 df-resub 42327 |
| This theorem is referenced by: rei4 42385 ipiiie0 42399 sn-0tie0 42412 sn-inelr 42448 |
| Copyright terms: Public domain | W3C validator |