Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ax12a2-o Structured version   Visualization version   GIF version

Theorem ax12a2-o 36964
Description: Derive ax-c15 36903 from a hypothesis in the form of ax-12 2171, without using ax-12 2171 or ax-c15 36903. The hypothesis is weaker than ax-12 2171, with 𝑧 both distinct from 𝑥 and not occurring in 𝜑. Thus, the hypothesis provides an alternate axiom that can be used in place of ax-12 2171, if we also have ax-c11 36901, which this proof uses. As Theorem ax12 2423 shows, the distinct variable conditions are optional. An open problem is whether we can derive this with ax-c11n 36902 instead of ax-c11 36901. (Contributed by NM, 2-Feb-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
ax12a2-o.1 (𝑥 = 𝑧 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑧𝜑)))
Assertion
Ref Expression
ax12a2-o (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem ax12a2-o
StepHypRef Expression
1 ax-5 1913 . . 3 (𝜑 → ∀𝑧𝜑)
2 ax12a2-o.1 . . 3 (𝑥 = 𝑧 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑧𝜑)))
31, 2syl5 34 . 2 (𝑥 = 𝑧 → (𝜑 → ∀𝑥(𝑥 = 𝑧𝜑)))
43ax12v2-o 36963 1 (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-11 2154  ax-12 2171  ax-13 2372  ax-c5 36897  ax-c4 36898  ax-c7 36899  ax-c10 36900  ax-c11 36901  ax-c9 36904
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator