MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ax9ALT Structured version   Visualization version   GIF version

Theorem ax9ALT 2733
Description: Proof of ax-9 2118 from Tarski's FOL and dfcleq 2731. For a version not using ax-8 2110 either, see eleq2w2 2734. This shows that dfcleq 2731 is too powerful to be used as a definition instead of df-cleq 2730. Note that ax-ext 2709 is also a direct consequence of dfcleq 2731 (as an instance of its forward implication). (Contributed by BJ, 24-Jun-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ax9ALT (𝑥 = 𝑦 → (𝑧𝑥𝑧𝑦))

Proof of Theorem ax9ALT
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 dfcleq 2731 . . . 4 (𝑥 = 𝑦 ↔ ∀𝑡(𝑡𝑥𝑡𝑦))
21biimpi 215 . . 3 (𝑥 = 𝑦 → ∀𝑡(𝑡𝑥𝑡𝑦))
3 biimp 214 . . 3 ((𝑡𝑥𝑡𝑦) → (𝑡𝑥𝑡𝑦))
42, 3sylg 1826 . 2 (𝑥 = 𝑦 → ∀𝑡(𝑡𝑥𝑡𝑦))
5 ax8 2114 . . . . 5 (𝑧 = 𝑡 → (𝑧𝑥𝑡𝑥))
65equcoms 2024 . . . 4 (𝑡 = 𝑧 → (𝑧𝑥𝑡𝑥))
7 ax8 2114 . . . 4 (𝑡 = 𝑧 → (𝑡𝑦𝑧𝑦))
86, 7imim12d 81 . . 3 (𝑡 = 𝑧 → ((𝑡𝑥𝑡𝑦) → (𝑧𝑥𝑧𝑦)))
98spimvw 2000 . 2 (∀𝑡(𝑡𝑥𝑡𝑦) → (𝑧𝑥𝑧𝑦))
104, 9syl 17 1 (𝑥 = 𝑦 → (𝑧𝑥𝑧𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-cleq 2730
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator