|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > axc16ALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of axc16 2261, shorter but requiring ax-10 2141, ax-11 2157, ax-13 2377 and using df-nf 1784 and df-sb 2065. (Contributed by NM, 17-May-2008.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| axc16ALT | ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sbequ12 2251 | . 2 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) | |
| 2 | ax-5 1910 | . . 3 ⊢ (𝜑 → ∀𝑧𝜑) | |
| 3 | 2 | hbsb3 2492 | . 2 ⊢ ([𝑧 / 𝑥]𝜑 → ∀𝑥[𝑧 / 𝑥]𝜑) | 
| 4 | 1, 3 | axc16i 2441 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∀wal 1538 [wsb 2064 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2157 ax-12 2177 ax-13 2377 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ex 1780 df-nf 1784 df-sb 2065 | 
| This theorem is referenced by: axc16gALT 2495 | 
| Copyright terms: Public domain | W3C validator |