| Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > axregszf | Structured version Visualization version GIF version | ||
| Description: Derivation of zfregs 9617 using ax-regs 35096. (Contributed by BTernaryTau, 30-Dec-2025.) |
| Ref | Expression |
|---|---|
| axregszf | ⊢ (𝐴 ≠ ∅ → ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐴) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 4301 | . 2 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
| 2 | axregscl 35098 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥(𝑥 ∈ 𝐴 ∧ ∀𝑦(𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ 𝐴))) | |
| 3 | disj1 4400 | . . . . 5 ⊢ ((𝑥 ∩ 𝐴) = ∅ ↔ ∀𝑦(𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ 𝐴)) | |
| 4 | 3 | rexbii 3077 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐴) = ∅ ↔ ∃𝑥 ∈ 𝐴 ∀𝑦(𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ 𝐴)) |
| 5 | df-rex 3055 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 ∀𝑦(𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ 𝐴) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ ∀𝑦(𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ 𝐴))) | |
| 6 | 4, 5 | bitr2i 276 | . . 3 ⊢ (∃𝑥(𝑥 ∈ 𝐴 ∧ ∀𝑦(𝑦 ∈ 𝑥 → ¬ 𝑦 ∈ 𝐴)) ↔ ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐴) = ∅) |
| 7 | 2, 6 | sylib 218 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐴) = ∅) |
| 8 | 1, 7 | sylbi 217 | 1 ⊢ (𝐴 ≠ ∅ → ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐴) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1539 = wceq 1541 ∃wex 1780 ∈ wcel 2110 ≠ wne 2926 ∃wrex 3054 ∩ cin 3899 ∅c0 4281 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 ax-regs 35096 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-dif 3903 df-in 3907 df-nul 4282 |
| This theorem is referenced by: setindregs 35100 |
| Copyright terms: Public domain | W3C validator |