Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axregszf Structured version   Visualization version   GIF version

Theorem axregszf 35099
Description: Derivation of zfregs 9617 using ax-regs 35096. (Contributed by BTernaryTau, 30-Dec-2025.)
Assertion
Ref Expression
axregszf (𝐴 ≠ ∅ → ∃𝑥𝐴 (𝑥𝐴) = ∅)
Distinct variable group:   𝑥,𝐴

Proof of Theorem axregszf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 n0 4301 . 2 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
2 axregscl 35098 . . 3 (∃𝑥 𝑥𝐴 → ∃𝑥(𝑥𝐴 ∧ ∀𝑦(𝑦𝑥 → ¬ 𝑦𝐴)))
3 disj1 4400 . . . . 5 ((𝑥𝐴) = ∅ ↔ ∀𝑦(𝑦𝑥 → ¬ 𝑦𝐴))
43rexbii 3077 . . . 4 (∃𝑥𝐴 (𝑥𝐴) = ∅ ↔ ∃𝑥𝐴𝑦(𝑦𝑥 → ¬ 𝑦𝐴))
5 df-rex 3055 . . . 4 (∃𝑥𝐴𝑦(𝑦𝑥 → ¬ 𝑦𝐴) ↔ ∃𝑥(𝑥𝐴 ∧ ∀𝑦(𝑦𝑥 → ¬ 𝑦𝐴)))
64, 5bitr2i 276 . . 3 (∃𝑥(𝑥𝐴 ∧ ∀𝑦(𝑦𝑥 → ¬ 𝑦𝐴)) ↔ ∃𝑥𝐴 (𝑥𝐴) = ∅)
72, 6sylib 218 . 2 (∃𝑥 𝑥𝐴 → ∃𝑥𝐴 (𝑥𝐴) = ∅)
81, 7sylbi 217 1 (𝐴 ≠ ∅ → ∃𝑥𝐴 (𝑥𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1539   = wceq 1541  wex 1780  wcel 2110  wne 2926  wrex 3054  cin 3899  c0 4281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702  ax-regs 35096
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-dif 3903  df-in 3907  df-nul 4282
This theorem is referenced by:  setindregs  35100
  Copyright terms: Public domain W3C validator