Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axregszf Structured version   Visualization version   GIF version

Theorem axregszf 35063
Description: Derivation of zfregs 9647 using ax-regs 35060. (Contributed by BTernaryTau, 30-Dec-2025.)
Assertion
Ref Expression
axregszf (𝐴 ≠ ∅ → ∃𝑥𝐴 (𝑥𝐴) = ∅)
Distinct variable group:   𝑥,𝐴

Proof of Theorem axregszf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 n0 4306 . 2 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
2 axregscl 35062 . . 3 (∃𝑥 𝑥𝐴 → ∃𝑥(𝑥𝐴 ∧ ∀𝑦(𝑦𝑥 → ¬ 𝑦𝐴)))
3 disj1 4405 . . . . 5 ((𝑥𝐴) = ∅ ↔ ∀𝑦(𝑦𝑥 → ¬ 𝑦𝐴))
43rexbii 3076 . . . 4 (∃𝑥𝐴 (𝑥𝐴) = ∅ ↔ ∃𝑥𝐴𝑦(𝑦𝑥 → ¬ 𝑦𝐴))
5 df-rex 3054 . . . 4 (∃𝑥𝐴𝑦(𝑦𝑥 → ¬ 𝑦𝐴) ↔ ∃𝑥(𝑥𝐴 ∧ ∀𝑦(𝑦𝑥 → ¬ 𝑦𝐴)))
64, 5bitr2i 276 . . 3 (∃𝑥(𝑥𝐴 ∧ ∀𝑦(𝑦𝑥 → ¬ 𝑦𝐴)) ↔ ∃𝑥𝐴 (𝑥𝐴) = ∅)
72, 6sylib 218 . 2 (∃𝑥 𝑥𝐴 → ∃𝑥𝐴 (𝑥𝐴) = ∅)
81, 7sylbi 217 1 (𝐴 ≠ ∅ → ∃𝑥𝐴 (𝑥𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1538   = wceq 1540  wex 1779  wcel 2109  wne 2925  wrex 3053  cin 3904  c0 4286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-regs 35060
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-dif 3908  df-in 3912  df-nul 4287
This theorem is referenced by:  setindregs  35064
  Copyright terms: Public domain W3C validator