| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > basrestermcfolem | Structured version Visualization version GIF version | ||
| Description: An element of the class of singlegons is a singlegon. The converse (discsntermlem 49608) also holds. This is trivial if 𝐵 is 𝑏 (abid 2713). (Contributed by Zhi Wang, 20-Oct-2025.) |
| Ref | Expression |
|---|---|
| basrestermcfolem | ⊢ (𝐵 ∈ {𝑏 ∣ ∃𝑥 𝑏 = {𝑥}} → ∃𝑥 𝐵 = {𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2735 | . . . 4 ⊢ (𝑏 = 𝐵 → (𝑏 = {𝑥} ↔ 𝐵 = {𝑥})) | |
| 2 | 1 | exbidv 1922 | . . 3 ⊢ (𝑏 = 𝐵 → (∃𝑥 𝑏 = {𝑥} ↔ ∃𝑥 𝐵 = {𝑥})) |
| 3 | 2 | elabg 3632 | . 2 ⊢ (𝐵 ∈ {𝑏 ∣ ∃𝑥 𝑏 = {𝑥}} → (𝐵 ∈ {𝑏 ∣ ∃𝑥 𝑏 = {𝑥}} ↔ ∃𝑥 𝐵 = {𝑥})) |
| 4 | 3 | ibi 267 | 1 ⊢ (𝐵 ∈ {𝑏 ∣ ∃𝑥 𝑏 = {𝑥}} → ∃𝑥 𝐵 = {𝑥}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∃wex 1780 ∈ wcel 2111 {cab 2709 {csn 4576 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 |
| This theorem is referenced by: basrestermcfo 49613 |
| Copyright terms: Public domain | W3C validator |