Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  basrestermcfolem Structured version   Visualization version   GIF version

Theorem basrestermcfolem 49609
Description: An element of the class of singlegons is a singlegon. The converse (discsntermlem 49608) also holds. This is trivial if 𝐵 is 𝑏 (abid 2713). (Contributed by Zhi Wang, 20-Oct-2025.)
Assertion
Ref Expression
basrestermcfolem (𝐵 ∈ {𝑏 ∣ ∃𝑥 𝑏 = {𝑥}} → ∃𝑥 𝐵 = {𝑥})
Distinct variable group:   𝐵,𝑏,𝑥

Proof of Theorem basrestermcfolem
StepHypRef Expression
1 eqeq1 2735 . . . 4 (𝑏 = 𝐵 → (𝑏 = {𝑥} ↔ 𝐵 = {𝑥}))
21exbidv 1922 . . 3 (𝑏 = 𝐵 → (∃𝑥 𝑏 = {𝑥} ↔ ∃𝑥 𝐵 = {𝑥}))
32elabg 3632 . 2 (𝐵 ∈ {𝑏 ∣ ∃𝑥 𝑏 = {𝑥}} → (𝐵 ∈ {𝑏 ∣ ∃𝑥 𝑏 = {𝑥}} ↔ ∃𝑥 𝐵 = {𝑥}))
43ibi 267 1 (𝐵 ∈ {𝑏 ∣ ∃𝑥 𝑏 = {𝑥}} → ∃𝑥 𝐵 = {𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wex 1780  wcel 2111  {cab 2709  {csn 4576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806
This theorem is referenced by:  basrestermcfo  49613
  Copyright terms: Public domain W3C validator