Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  discsntermlem Structured version   Visualization version   GIF version

Theorem discsntermlem 49222
Description: A singlegon is an element of the class of singlegons. The converse (basrestermcfolem 49223) also holds. This is trivial if 𝐵 is 𝑏 (abid 2717). (Contributed by Zhi Wang, 20-Oct-2025.)
Assertion
Ref Expression
discsntermlem (∃𝑥 𝐵 = {𝑥} → 𝐵 ∈ {𝑏 ∣ ∃𝑥 𝑏 = {𝑥}})
Distinct variable group:   𝐵,𝑏,𝑥

Proof of Theorem discsntermlem
StepHypRef Expression
1 vsnex 5433 . . . . 5 {𝑥} ∈ V
2 eleq1 2828 . . . . 5 (𝐵 = {𝑥} → (𝐵 ∈ V ↔ {𝑥} ∈ V))
31, 2mpbiri 258 . . . 4 (𝐵 = {𝑥} → 𝐵 ∈ V)
43exlimiv 1929 . . 3 (∃𝑥 𝐵 = {𝑥} → 𝐵 ∈ V)
5 eqeq1 2740 . . . . 5 (𝑏 = 𝐵 → (𝑏 = {𝑥} ↔ 𝐵 = {𝑥}))
65exbidv 1920 . . . 4 (𝑏 = 𝐵 → (∃𝑥 𝑏 = {𝑥} ↔ ∃𝑥 𝐵 = {𝑥}))
76elabg 3675 . . 3 (𝐵 ∈ V → (𝐵 ∈ {𝑏 ∣ ∃𝑥 𝑏 = {𝑥}} ↔ ∃𝑥 𝐵 = {𝑥}))
84, 7syl 17 . 2 (∃𝑥 𝐵 = {𝑥} → (𝐵 ∈ {𝑏 ∣ ∃𝑥 𝑏 = {𝑥}} ↔ ∃𝑥 𝐵 = {𝑥}))
98ibir 268 1 (∃𝑥 𝐵 = {𝑥} → 𝐵 ∈ {𝑏 ∣ ∃𝑥 𝑏 = {𝑥}})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1539  wex 1778  wcel 2107  {cab 2713  Vcvv 3479  {csn 4625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707  ax-sep 5295  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-v 3481  df-un 3955  df-sn 4626  df-pr 4628
This theorem is referenced by:  discsnterm  49226  basrestermcfo  49227
  Copyright terms: Public domain W3C validator