Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  discsntermlem Structured version   Visualization version   GIF version

Theorem discsntermlem 49414
Description: A singlegon is an element of the class of singlegons. The converse (basrestermcfolem 49415) also holds. This is trivial if 𝐵 is 𝑏 (abid 2718). (Contributed by Zhi Wang, 20-Oct-2025.)
Assertion
Ref Expression
discsntermlem (∃𝑥 𝐵 = {𝑥} → 𝐵 ∈ {𝑏 ∣ ∃𝑥 𝑏 = {𝑥}})
Distinct variable group:   𝐵,𝑏,𝑥

Proof of Theorem discsntermlem
StepHypRef Expression
1 vsnex 5409 . . . . 5 {𝑥} ∈ V
2 eleq1 2823 . . . . 5 (𝐵 = {𝑥} → (𝐵 ∈ V ↔ {𝑥} ∈ V))
31, 2mpbiri 258 . . . 4 (𝐵 = {𝑥} → 𝐵 ∈ V)
43exlimiv 1930 . . 3 (∃𝑥 𝐵 = {𝑥} → 𝐵 ∈ V)
5 eqeq1 2740 . . . . 5 (𝑏 = 𝐵 → (𝑏 = {𝑥} ↔ 𝐵 = {𝑥}))
65exbidv 1921 . . . 4 (𝑏 = 𝐵 → (∃𝑥 𝑏 = {𝑥} ↔ ∃𝑥 𝐵 = {𝑥}))
76elabg 3660 . . 3 (𝐵 ∈ V → (𝐵 ∈ {𝑏 ∣ ∃𝑥 𝑏 = {𝑥}} ↔ ∃𝑥 𝐵 = {𝑥}))
84, 7syl 17 . 2 (∃𝑥 𝐵 = {𝑥} → (𝐵 ∈ {𝑏 ∣ ∃𝑥 𝑏 = {𝑥}} ↔ ∃𝑥 𝐵 = {𝑥}))
98ibir 268 1 (∃𝑥 𝐵 = {𝑥} → 𝐵 ∈ {𝑏 ∣ ∃𝑥 𝑏 = {𝑥}})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wex 1779  wcel 2109  {cab 2714  Vcvv 3464  {csn 4606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-un 3936  df-sn 4607  df-pr 4609
This theorem is referenced by:  discsnterm  49418  basrestermcfo  49419
  Copyright terms: Public domain W3C validator