Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  discsntermlem Structured version   Visualization version   GIF version

Theorem discsntermlem 49695
Description: A singlegon is an element of the class of singlegons. The converse (basrestermcfolem 49696) also holds. This is trivial if 𝐵 is 𝑏 (abid 2715). (Contributed by Zhi Wang, 20-Oct-2025.)
Assertion
Ref Expression
discsntermlem (∃𝑥 𝐵 = {𝑥} → 𝐵 ∈ {𝑏 ∣ ∃𝑥 𝑏 = {𝑥}})
Distinct variable group:   𝐵,𝑏,𝑥

Proof of Theorem discsntermlem
StepHypRef Expression
1 vsnex 5374 . . . . 5 {𝑥} ∈ V
2 eleq1 2821 . . . . 5 (𝐵 = {𝑥} → (𝐵 ∈ V ↔ {𝑥} ∈ V))
31, 2mpbiri 258 . . . 4 (𝐵 = {𝑥} → 𝐵 ∈ V)
43exlimiv 1931 . . 3 (∃𝑥 𝐵 = {𝑥} → 𝐵 ∈ V)
5 eqeq1 2737 . . . . 5 (𝑏 = 𝐵 → (𝑏 = {𝑥} ↔ 𝐵 = {𝑥}))
65exbidv 1922 . . . 4 (𝑏 = 𝐵 → (∃𝑥 𝑏 = {𝑥} ↔ ∃𝑥 𝐵 = {𝑥}))
76elabg 3628 . . 3 (𝐵 ∈ V → (𝐵 ∈ {𝑏 ∣ ∃𝑥 𝑏 = {𝑥}} ↔ ∃𝑥 𝐵 = {𝑥}))
84, 7syl 17 . 2 (∃𝑥 𝐵 = {𝑥} → (𝐵 ∈ {𝑏 ∣ ∃𝑥 𝑏 = {𝑥}} ↔ ∃𝑥 𝐵 = {𝑥}))
98ibir 268 1 (∃𝑥 𝐵 = {𝑥} → 𝐵 ∈ {𝑏 ∣ ∃𝑥 𝑏 = {𝑥}})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wex 1780  wcel 2113  {cab 2711  Vcvv 3437  {csn 4575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3439  df-un 3903  df-sn 4576  df-pr 4578
This theorem is referenced by:  discsnterm  49699  basrestermcfo  49700
  Copyright terms: Public domain W3C validator