| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > discsntermlem | Structured version Visualization version GIF version | ||
| Description: A singlegon is an element of the class of singlegons. The converse (basrestermcfolem 49309) also holds. This is trivial if 𝐵 is 𝑏 (abid 2716). (Contributed by Zhi Wang, 20-Oct-2025.) |
| Ref | Expression |
|---|---|
| discsntermlem | ⊢ (∃𝑥 𝐵 = {𝑥} → 𝐵 ∈ {𝑏 ∣ ∃𝑥 𝑏 = {𝑥}}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vsnex 5402 | . . . . 5 ⊢ {𝑥} ∈ V | |
| 2 | eleq1 2821 | . . . . 5 ⊢ (𝐵 = {𝑥} → (𝐵 ∈ V ↔ {𝑥} ∈ V)) | |
| 3 | 1, 2 | mpbiri 258 | . . . 4 ⊢ (𝐵 = {𝑥} → 𝐵 ∈ V) |
| 4 | 3 | exlimiv 1929 | . . 3 ⊢ (∃𝑥 𝐵 = {𝑥} → 𝐵 ∈ V) |
| 5 | eqeq1 2738 | . . . . 5 ⊢ (𝑏 = 𝐵 → (𝑏 = {𝑥} ↔ 𝐵 = {𝑥})) | |
| 6 | 5 | exbidv 1920 | . . . 4 ⊢ (𝑏 = 𝐵 → (∃𝑥 𝑏 = {𝑥} ↔ ∃𝑥 𝐵 = {𝑥})) |
| 7 | 6 | elabg 3653 | . . 3 ⊢ (𝐵 ∈ V → (𝐵 ∈ {𝑏 ∣ ∃𝑥 𝑏 = {𝑥}} ↔ ∃𝑥 𝐵 = {𝑥})) |
| 8 | 4, 7 | syl 17 | . 2 ⊢ (∃𝑥 𝐵 = {𝑥} → (𝐵 ∈ {𝑏 ∣ ∃𝑥 𝑏 = {𝑥}} ↔ ∃𝑥 𝐵 = {𝑥})) |
| 9 | 8 | ibir 268 | 1 ⊢ (∃𝑥 𝐵 = {𝑥} → 𝐵 ∈ {𝑏 ∣ ∃𝑥 𝑏 = {𝑥}}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∃wex 1778 ∈ wcel 2107 {cab 2712 Vcvv 3457 {csn 4599 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5264 ax-pr 5400 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3459 df-un 3929 df-sn 4600 df-pr 4602 |
| This theorem is referenced by: discsnterm 49312 basrestermcfo 49313 |
| Copyright terms: Public domain | W3C validator |