|   | Mathbox for Zhi Wang | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > discsntermlem | Structured version Visualization version GIF version | ||
| Description: A singlegon is an element of the class of singlegons. The converse (basrestermcfolem 49223) also holds. This is trivial if 𝐵 is 𝑏 (abid 2717). (Contributed by Zhi Wang, 20-Oct-2025.) | 
| Ref | Expression | 
|---|---|
| discsntermlem | ⊢ (∃𝑥 𝐵 = {𝑥} → 𝐵 ∈ {𝑏 ∣ ∃𝑥 𝑏 = {𝑥}}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | vsnex 5433 | . . . . 5 ⊢ {𝑥} ∈ V | |
| 2 | eleq1 2828 | . . . . 5 ⊢ (𝐵 = {𝑥} → (𝐵 ∈ V ↔ {𝑥} ∈ V)) | |
| 3 | 1, 2 | mpbiri 258 | . . . 4 ⊢ (𝐵 = {𝑥} → 𝐵 ∈ V) | 
| 4 | 3 | exlimiv 1929 | . . 3 ⊢ (∃𝑥 𝐵 = {𝑥} → 𝐵 ∈ V) | 
| 5 | eqeq1 2740 | . . . . 5 ⊢ (𝑏 = 𝐵 → (𝑏 = {𝑥} ↔ 𝐵 = {𝑥})) | |
| 6 | 5 | exbidv 1920 | . . . 4 ⊢ (𝑏 = 𝐵 → (∃𝑥 𝑏 = {𝑥} ↔ ∃𝑥 𝐵 = {𝑥})) | 
| 7 | 6 | elabg 3675 | . . 3 ⊢ (𝐵 ∈ V → (𝐵 ∈ {𝑏 ∣ ∃𝑥 𝑏 = {𝑥}} ↔ ∃𝑥 𝐵 = {𝑥})) | 
| 8 | 4, 7 | syl 17 | . 2 ⊢ (∃𝑥 𝐵 = {𝑥} → (𝐵 ∈ {𝑏 ∣ ∃𝑥 𝑏 = {𝑥}} ↔ ∃𝑥 𝐵 = {𝑥})) | 
| 9 | 8 | ibir 268 | 1 ⊢ (∃𝑥 𝐵 = {𝑥} → 𝐵 ∈ {𝑏 ∣ ∃𝑥 𝑏 = {𝑥}}) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∃wex 1778 ∈ wcel 2107 {cab 2713 Vcvv 3479 {csn 4625 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-v 3481 df-un 3955 df-sn 4626 df-pr 4628 | 
| This theorem is referenced by: discsnterm 49226 basrestermcfo 49227 | 
| Copyright terms: Public domain | W3C validator |