| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > discsntermlem | Structured version Visualization version GIF version | ||
| Description: A singlegon is an element of the class of singlegons. The converse (basrestermcfolem 49415) also holds. This is trivial if 𝐵 is 𝑏 (abid 2718). (Contributed by Zhi Wang, 20-Oct-2025.) |
| Ref | Expression |
|---|---|
| discsntermlem | ⊢ (∃𝑥 𝐵 = {𝑥} → 𝐵 ∈ {𝑏 ∣ ∃𝑥 𝑏 = {𝑥}}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vsnex 5409 | . . . . 5 ⊢ {𝑥} ∈ V | |
| 2 | eleq1 2823 | . . . . 5 ⊢ (𝐵 = {𝑥} → (𝐵 ∈ V ↔ {𝑥} ∈ V)) | |
| 3 | 1, 2 | mpbiri 258 | . . . 4 ⊢ (𝐵 = {𝑥} → 𝐵 ∈ V) |
| 4 | 3 | exlimiv 1930 | . . 3 ⊢ (∃𝑥 𝐵 = {𝑥} → 𝐵 ∈ V) |
| 5 | eqeq1 2740 | . . . . 5 ⊢ (𝑏 = 𝐵 → (𝑏 = {𝑥} ↔ 𝐵 = {𝑥})) | |
| 6 | 5 | exbidv 1921 | . . . 4 ⊢ (𝑏 = 𝐵 → (∃𝑥 𝑏 = {𝑥} ↔ ∃𝑥 𝐵 = {𝑥})) |
| 7 | 6 | elabg 3660 | . . 3 ⊢ (𝐵 ∈ V → (𝐵 ∈ {𝑏 ∣ ∃𝑥 𝑏 = {𝑥}} ↔ ∃𝑥 𝐵 = {𝑥})) |
| 8 | 4, 7 | syl 17 | . 2 ⊢ (∃𝑥 𝐵 = {𝑥} → (𝐵 ∈ {𝑏 ∣ ∃𝑥 𝑏 = {𝑥}} ↔ ∃𝑥 𝐵 = {𝑥})) |
| 9 | 8 | ibir 268 | 1 ⊢ (∃𝑥 𝐵 = {𝑥} → 𝐵 ∈ {𝑏 ∣ ∃𝑥 𝑏 = {𝑥}}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2714 Vcvv 3464 {csn 4606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-un 3936 df-sn 4607 df-pr 4609 |
| This theorem is referenced by: discsnterm 49418 basrestermcfo 49419 |
| Copyright terms: Public domain | W3C validator |