![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ibi | Structured version Visualization version GIF version |
Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 17-Oct-2003.) |
Ref | Expression |
---|---|
ibi.1 | ⊢ (𝜑 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ibi | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | ibi.1 | . 2 ⊢ (𝜑 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | mpbid 232 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: ibir 268 elab3gf 3700 elab3g 3701 elimhyp 4613 elimhyp2v 4614 elimhyp3v 4615 elimhyp4v 4616 elpwi 4629 elsni 4665 elpri 4671 eltpi 4711 snssi 4833 prssi 4846 snelpwi 5463 prelpwi 5467 elxpi 5722 releldmb 5971 relelrnb 5972 elrnmpt2d 5989 eloni 6405 limuni2 6457 funeu 6603 fneu 6689 fvelima 6987 fvelimad 6989 eloprabi 8104 fo2ndf 8162 orderseqlem 8198 tfrlem9 8441 oeeulem 8657 elqsi 8828 qsel 8854 ecopovsym 8877 elpmi 8904 elmapi 8907 pmsspw 8935 brdomi 9018 brdomiOLD 9019 en0 9078 en0r 9081 en1 9086 undomOLD 9126 mapdom1 9208 rexdif1en 9224 ominf 9321 ominfOLD 9322 unblem2 9357 unfilem1 9371 fodomfir 9396 fiin 9491 brwdomi 9637 canthwdom 9648 brwdom3i 9652 unxpwdom 9658 scott0 9955 acni 10114 djuinf 10258 pwdjudom 10284 fin1ai 10362 fin2i 10364 fin4i 10367 ssfin3ds 10399 fin23lem17 10407 fin23lem38 10418 fin23lem39 10419 isfin32i 10434 fin34 10459 isfin7-2 10465 fin1a2lem13 10481 fin12 10482 gchi 10693 wuntr 10774 wununi 10775 wunpw 10776 wunpr 10778 wun0 10787 tskpwss 10821 tskpw 10822 tsken 10823 grutr 10862 grupw 10864 grupr 10866 gruurn 10867 ingru 10884 indpi 10976 eliooord 13466 fzrev3i 13651 elfzole1 13724 elfzolt2 13725 bcp1nk 14366 rere 15171 nn0abscl 15361 climcl 15545 rlimcl 15549 rlimdm 15597 o1res 15606 rlimdmo1 15664 climcau 15719 caucvgb 15728 fprodcnv 16031 cshws0 17149 restsspw 17491 mreiincl 17654 catidex 17732 catcocl 17743 catass 17744 homa1 18104 homahom2 18105 odulat 18505 dlatjmdi 18596 psrel 18639 psref2 18640 pstr2 18641 reldir 18669 dirdm 18670 dirref 18671 dirtr 18672 dirge 18673 mgmcl 18681 submgmss 18743 submgmcl 18745 submgmmgm 18746 submss 18844 subm0cl 18846 submcl 18847 submmnd 18848 efmndbasf 18910 subgsubm 19188 symgbasf1o 19416 symginv 19444 psgneu 19548 odmulg 19598 frgpnabl 19917 dprdgrp 20049 dprdf 20050 abvfge0 20837 abveq0 20841 abvmul 20844 abvtri 20845 lbsss 21099 lbssp 21101 lbsind 21102 domnchr 21570 cssi 21725 linds1 21853 linds2 21854 lindsind 21860 opsrtoslem2 22103 opsrso 22105 mdetunilem9 22647 uniopn 22924 iunopn 22925 inopn 22926 fiinopn 22928 eltpsg 22970 eltpsgOLD 22971 basis1 22978 basis2 22979 eltg4i 22988 lmff 23330 t1sep2 23398 cmpfii 23438 ptfinfin 23548 kqhmph 23848 fbasne0 23859 0nelfb 23860 fbsspw 23861 fbasssin 23865 ufli 23943 uffixfr 23952 elfm 23976 fclsopni 24044 fclselbas 24045 ustssxp 24234 ustbasel 24236 ustincl 24237 ustdiag 24238 ustinvel 24239 ustexhalf 24240 ustfilxp 24242 ustbas2 24255 ustbas 24257 psmetf 24337 psmet0 24339 psmettri2 24340 metflem 24359 xmetf 24360 xmeteq0 24369 xmettri2 24371 tmsxms 24520 tmsms 24521 metustsym 24589 tngnrg 24716 cncff 24938 cncfi 24939 cfili 25321 iscmet3lem2 25345 mbfres 25698 mbfimaopnlem 25709 limcresi 25940 dvcnp2 25975 dvcnp2OLD 25976 ulmcl 26442 ulmf 26443 ulmcau 26456 pserulm 26483 pserdvlem2 26490 sinq34lt0t 26569 logtayl 26720 dchrmhm 27303 lgsdir2lem2 27388 2sqlem9 27489 mulog2sum 27599 eleei 28930 uhgrf 29097 ushgrf 29098 upgrf 29121 umgrf 29133 uspgrf 29189 usgrf 29190 usgrfs 29192 nbcplgr 29469 clwlkcompim 29816 tncp 30510 eulplig 30517 grpofo 30531 grpolidinv 30533 grpoass 30535 nvvop 30641 phpar 30856 pjch1 31702 fzne1 32793 toslub 32946 tosglb 32948 chnub 32984 orngsqr 33299 fldextsubrg 33664 fldextress 33665 zhmnrg 33913 issgon 34087 measfrge0 34167 measvnul 34170 measvun 34173 fzssfzo 34516 bnj916 34909 bnj983 34927 cplgredgex 35088 acycgrcycl 35115 mfsdisj 35518 mtyf2 35519 maxsta 35522 mvtinf 35523 r1peuqusdeg1 35611 hfun 36142 hfsn 36143 hfelhf 36145 hfuni 36148 hfpw 36149 fneuni 36313 curryset 36912 mptsnunlem 37304 heibor1lem 37769 heiborlem1 37771 heiborlem3 37773 opidonOLD 37812 isexid2 37815 elrelsrelim 38444 eqvrelqsel 38572 elpcliN 39850 lnrfg 43076 sdomne0 43375 sdomne0d 43376 pwinfi2 43524 frege55lem1c 43878 gneispacef 44097 gneispacef2 44098 gneispacern2 44101 gneispace0nelrn 44102 gneispaceel 44105 gneispacess 44107 mnuop123d 44231 trintALTVD 44851 trintALT 44852 eliuniin 45001 eliuniin2 45022 disjrnmpt2 45095 fvelima2 45169 stoweidlem35 45956 saluncl 46238 saldifcl 46240 0sal 46241 sge0resplit 46327 omedm 46420 funressneu 46962 afvelrnb0 47079 afvelima 47082 rlimdmafv 47092 funressndmafv2rn 47138 rlimdmafv2 47173 elsetpreimafv 47259 oexpnegALTV 47551 gricbri 47769 grlimprop2 47810 grilcbri 47826 asslawass 47916 linindsi 48176 |
Copyright terms: Public domain | W3C validator |