Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ibi | Structured version Visualization version GIF version |
Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 17-Oct-2003.) |
Ref | Expression |
---|---|
ibi.1 | ⊢ (𝜑 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ibi | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | ibi.1 | . 2 ⊢ (𝜑 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | mpbid 231 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: ibir 267 elab3gf 3608 elab3g 3609 elimhyp 4521 elimhyp2v 4522 elimhyp3v 4523 elimhyp4v 4524 elpwi 4539 elsni 4575 elpri 4580 eltpi 4620 snssi 4738 prssi 4751 prelpwi 5357 elxpi 5602 releldmb 5844 relelrnb 5845 elrnmpt2d 5861 eloni 6261 limuni2 6312 funeu 6443 fneu 6527 fvelima 6817 fvelimad 6818 eloprabi 7876 fo2ndf 7933 tfrlem9 8187 oeeulem 8394 elqsi 8517 qsel 8543 ecopovsym 8566 elpmi 8592 elmapi 8595 pmsspw 8623 brdomi 8704 en0 8758 en1 8765 undom 8800 mapdom1 8878 ominf 8964 unblem2 8997 unfilem1 9008 fiin 9111 brwdomi 9257 canthwdom 9268 brwdom3i 9272 unxpwdom 9278 scott0 9575 acni 9732 djuinf 9875 pwdjudom 9903 fin1ai 9980 fin2i 9982 fin4i 9985 ssfin3ds 10017 fin23lem17 10025 fin23lem38 10036 fin23lem39 10037 isfin32i 10052 fin34 10077 isfin7-2 10083 fin1a2lem13 10099 fin12 10100 gchi 10311 wuntr 10392 wununi 10393 wunpw 10394 wunpr 10396 wun0 10405 tskpwss 10439 tskpw 10440 tsken 10441 grutr 10480 grupw 10482 grupr 10484 gruurn 10485 ingru 10502 indpi 10594 eliooord 13067 fzrev3i 13252 elfzole1 13324 elfzolt2 13325 bcp1nk 13959 rere 14761 nn0abscl 14952 climcl 15136 rlimcl 15140 rlimdm 15188 o1res 15197 rlimdmo1 15255 climcau 15310 caucvgb 15319 fprodcnv 15621 cshws0 16731 restsspw 17059 mreiincl 17222 catidex 17300 catcocl 17311 catass 17312 homa1 17668 homahom2 17669 odulat 18068 dlatjmdi 18159 psrel 18202 psref2 18203 pstr2 18204 reldir 18232 dirdm 18233 dirref 18234 dirtr 18235 dirge 18236 mgmcl 18244 submss 18363 subm0cl 18365 submcl 18366 submmnd 18367 efmndbasf 18429 subgsubm 18692 symgbasf1o 18897 symginv 18925 psgneu 19029 odmulg 19078 frgpnabl 19391 dprdgrp 19523 dprdf 19524 abvfge0 19997 abveq0 20001 abvmul 20004 abvtri 20005 lbsss 20254 lbssp 20256 lbsind 20257 domnchr 20648 cssi 20801 linds1 20927 linds2 20928 lindsind 20934 opsrtoslem2 21173 opsrso 21175 mdetunilem9 21677 uniopn 21954 iunopn 21955 inopn 21956 fiinopn 21958 eltpsg 22000 eltpsgOLD 22001 basis1 22008 basis2 22009 eltg4i 22018 lmff 22360 t1sep2 22428 cmpfii 22468 ptfinfin 22578 kqhmph 22878 fbasne0 22889 0nelfb 22890 fbsspw 22891 fbasssin 22895 ufli 22973 uffixfr 22982 elfm 23006 fclsopni 23074 fclselbas 23075 ustssxp 23264 ustbasel 23266 ustincl 23267 ustdiag 23268 ustinvel 23269 ustexhalf 23270 ustfilxp 23272 ustbas2 23285 ustbas 23287 psmetf 23367 psmet0 23369 psmettri2 23370 metflem 23389 xmetf 23390 xmeteq0 23399 xmettri2 23401 tmsxms 23548 tmsms 23549 metustsym 23617 tngnrg 23744 cncff 23962 cncfi 23963 cfili 24337 iscmet3lem2 24361 mbfres 24713 mbfimaopnlem 24724 limcresi 24954 dvcnp2 24989 ulmcl 25445 ulmf 25446 ulmcau 25459 pserulm 25486 pserdvlem2 25492 sinq34lt0t 25571 logtayl 25720 dchrmhm 26294 lgsdir2lem2 26379 2sqlem9 26480 mulog2sum 26590 eleei 27168 uhgrf 27335 ushgrf 27336 upgrf 27359 umgrf 27371 uspgrf 27427 usgrf 27428 usgrfs 27430 nbcplgr 27704 clwlkcompim 28049 tncp 28741 eulplig 28748 grpofo 28762 grpolidinv 28764 grpoass 28766 nvvop 28872 phpar 29087 pjch1 29933 fzne1 31011 toslub 31153 tosglb 31155 orngsqr 31405 fldextsubrg 31628 fldextress 31629 zhmnrg 31817 issgon 31991 measfrge0 32071 measvnul 32074 measvun 32077 fzssfzo 32418 bnj916 32813 bnj983 32831 cplgredgex 32982 acycgrcycl 33009 mfsdisj 33412 mtyf2 33413 maxsta 33416 mvtinf 33417 orderseqlem 33728 hfun 34407 hfsn 34408 hfelhf 34410 hfuni 34413 hfpw 34414 fneuni 34463 curryset 35062 mptsnunlem 35436 heibor1lem 35894 heiborlem1 35896 heiborlem3 35898 opidonOLD 35937 isexid2 35940 elrelsrelim 36533 eqvrelqsel 36656 elpcliN 37834 lnrfg 40860 pwinfi2 41058 frege55lem1c 41413 gneispacef 41634 gneispacef2 41635 gneispacern2 41638 gneispace0nelrn 41639 gneispaceel 41642 gneispacess 41644 mnuop123d 41769 trintALTVD 42389 trintALT 42390 eliuniin 42538 eliuniin2 42558 disjrnmpt2 42615 fvelima2 42695 stoweidlem35 43466 saluncl 43748 saldifcl 43750 0sal 43751 sge0resplit 43834 omedm 43927 funressneu 44428 afvelrnb0 44543 afvelima 44546 rlimdmafv 44556 funressndmafv2rn 44602 rlimdmafv2 44637 elsetpreimafv 44725 oexpnegALTV 45017 isisomgr 45164 submgmss 45234 submgmcl 45236 submgmmgm 45237 asslawass 45275 linindsi 45676 |
Copyright terms: Public domain | W3C validator |