![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ibi | Structured version Visualization version GIF version |
Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 17-Oct-2003.) |
Ref | Expression |
---|---|
ibi.1 | ⊢ (𝜑 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ibi | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | ibi.1 | . 2 ⊢ (𝜑 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | mpbid 231 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: ibir 268 elab3gf 3675 elab3g 3676 elimhyp 4594 elimhyp2v 4595 elimhyp3v 4596 elimhyp4v 4597 elpwi 4610 elsni 4646 elpri 4651 eltpi 4692 snssi 4812 prssi 4825 snelpwi 5444 prelpwi 5448 elxpi 5699 releldmb 5946 relelrnb 5947 elrnmpt2d 5963 eloni 6375 limuni2 6427 funeu 6574 fneu 6660 fvelima 6958 fvelimad 6960 eloprabi 8049 fo2ndf 8107 orderseqlem 8143 tfrlem9 8385 oeeulem 8601 elqsi 8764 qsel 8790 ecopovsym 8813 elpmi 8840 elmapi 8843 pmsspw 8871 brdomi 8954 brdomiOLD 8955 en0 9013 en0r 9016 en1 9021 undomOLD 9060 mapdom1 9142 rexdif1en 9158 ominf 9258 ominfOLD 9259 unblem2 9296 unfilem1 9310 fiin 9417 brwdomi 9563 canthwdom 9574 brwdom3i 9578 unxpwdom 9584 scott0 9881 acni 10040 djuinf 10183 pwdjudom 10211 fin1ai 10288 fin2i 10290 fin4i 10293 ssfin3ds 10325 fin23lem17 10333 fin23lem38 10344 fin23lem39 10345 isfin32i 10360 fin34 10385 isfin7-2 10391 fin1a2lem13 10407 fin12 10408 gchi 10619 wuntr 10700 wununi 10701 wunpw 10702 wunpr 10704 wun0 10713 tskpwss 10747 tskpw 10748 tsken 10749 grutr 10788 grupw 10790 grupr 10792 gruurn 10793 ingru 10810 indpi 10902 eliooord 13383 fzrev3i 13568 elfzole1 13640 elfzolt2 13641 bcp1nk 14277 rere 15069 nn0abscl 15259 climcl 15443 rlimcl 15447 rlimdm 15495 o1res 15504 rlimdmo1 15562 climcau 15617 caucvgb 15626 fprodcnv 15927 cshws0 17035 restsspw 17377 mreiincl 17540 catidex 17618 catcocl 17629 catass 17630 homa1 17987 homahom2 17988 odulat 18388 dlatjmdi 18479 psrel 18522 psref2 18523 pstr2 18524 reldir 18552 dirdm 18553 dirref 18554 dirtr 18555 dirge 18556 mgmcl 18564 submss 18690 subm0cl 18692 submcl 18693 submmnd 18694 efmndbasf 18756 subgsubm 19028 symgbasf1o 19242 symginv 19270 psgneu 19374 odmulg 19424 frgpnabl 19743 dprdgrp 19875 dprdf 19876 abvfge0 20430 abveq0 20434 abvmul 20437 abvtri 20438 lbsss 20688 lbssp 20690 lbsind 20691 domnchr 21084 cssi 21237 linds1 21365 linds2 21366 lindsind 21372 opsrtoslem2 21617 opsrso 21619 mdetunilem9 22122 uniopn 22399 iunopn 22400 inopn 22401 fiinopn 22403 eltpsg 22445 eltpsgOLD 22446 basis1 22453 basis2 22454 eltg4i 22463 lmff 22805 t1sep2 22873 cmpfii 22913 ptfinfin 23023 kqhmph 23323 fbasne0 23334 0nelfb 23335 fbsspw 23336 fbasssin 23340 ufli 23418 uffixfr 23427 elfm 23451 fclsopni 23519 fclselbas 23520 ustssxp 23709 ustbasel 23711 ustincl 23712 ustdiag 23713 ustinvel 23714 ustexhalf 23715 ustfilxp 23717 ustbas2 23730 ustbas 23732 psmetf 23812 psmet0 23814 psmettri2 23815 metflem 23834 xmetf 23835 xmeteq0 23844 xmettri2 23846 tmsxms 23995 tmsms 23996 metustsym 24064 tngnrg 24191 cncff 24409 cncfi 24410 cfili 24785 iscmet3lem2 24809 mbfres 25161 mbfimaopnlem 25172 limcresi 25402 dvcnp2 25437 ulmcl 25893 ulmf 25894 ulmcau 25907 pserulm 25934 pserdvlem2 25940 sinq34lt0t 26019 logtayl 26168 dchrmhm 26744 lgsdir2lem2 26829 2sqlem9 26930 mulog2sum 27040 eleei 28155 uhgrf 28322 ushgrf 28323 upgrf 28346 umgrf 28358 uspgrf 28414 usgrf 28415 usgrfs 28417 nbcplgr 28691 clwlkcompim 29037 tncp 29731 eulplig 29738 grpofo 29752 grpolidinv 29754 grpoass 29756 nvvop 29862 phpar 30077 pjch1 30923 fzne1 31999 toslub 32143 tosglb 32145 orngsqr 32422 fldextsubrg 32730 fldextress 32731 zhmnrg 32947 issgon 33121 measfrge0 33201 measvnul 33204 measvun 33207 fzssfzo 33550 bnj916 33944 bnj983 33962 cplgredgex 34111 acycgrcycl 34138 mfsdisj 34541 mtyf2 34542 maxsta 34545 mvtinf 34546 hfun 35150 hfsn 35151 hfelhf 35153 hfuni 35156 hfpw 35157 gg-dvcnp2 35174 fneuni 35232 curryset 35827 mptsnunlem 36219 heibor1lem 36677 heiborlem1 36679 heiborlem3 36681 opidonOLD 36720 isexid2 36723 elrelsrelim 37358 eqvrelqsel 37486 elpcliN 38764 lnrfg 41861 sdomne0 42164 sdomne0d 42165 pwinfi2 42313 frege55lem1c 42667 gneispacef 42886 gneispacef2 42887 gneispacern2 42890 gneispace0nelrn 42891 gneispaceel 42894 gneispacess 42896 mnuop123d 43021 trintALTVD 43641 trintALT 43642 eliuniin 43788 eliuniin2 43809 disjrnmpt2 43886 fvelima2 43964 stoweidlem35 44751 saluncl 45033 saldifcl 45035 0sal 45036 sge0resplit 45122 omedm 45215 funressneu 45757 afvelrnb0 45872 afvelima 45875 rlimdmafv 45885 funressndmafv2rn 45931 rlimdmafv2 45966 elsetpreimafv 46053 oexpnegALTV 46345 isisomgr 46492 submgmss 46562 submgmcl 46564 submgmmgm 46565 asslawass 46603 linindsi 47128 |
Copyright terms: Public domain | W3C validator |