Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ibi | Structured version Visualization version GIF version |
Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 17-Oct-2003.) |
Ref | Expression |
---|---|
ibi.1 | ⊢ (𝜑 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ibi | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | ibi.1 | . 2 ⊢ (𝜑 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | mpbid 235 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 |
This theorem is referenced by: ibir 271 elab3gf 3594 elimhyp 4483 elimhyp2v 4484 elimhyp3v 4485 elimhyp4v 4486 elpwi 4501 elsni 4537 elpri 4542 eltpi 4580 snssi 4696 prssi 4709 prelpwi 5306 elxpi 5544 releldmb 5785 relelrnb 5786 elrnmpt2d 5802 elpredim 6136 eloni 6177 limuni2 6228 funeu 6358 fneu 6441 fvelima 6717 fvelimad 6718 eloprabi 7763 fo2ndf 7820 tfrlem9 8029 oeeulem 8235 elqsi 8358 qsel 8384 ecopovsym 8407 elpmi 8433 elmapi 8436 pmsspw 8457 brdomi 8536 undom 8623 mapdom1 8701 ominf 8749 unblem2 8794 unfilem1 8805 fiin 8909 brwdomi 9055 canthwdom 9066 brwdom3i 9070 unxpwdom 9076 scott0 9338 acni 9495 djuinf 9638 pwdjudom 9666 fin1ai 9743 fin2i 9745 fin4i 9748 ssfin3ds 9780 fin23lem17 9788 fin23lem38 9799 fin23lem39 9800 isfin32i 9815 fin34 9840 isfin7-2 9846 fin1a2lem13 9862 fin12 9863 gchi 10074 wuntr 10155 wununi 10156 wunpw 10157 wunpr 10159 wun0 10168 tskpwss 10202 tskpw 10203 tsken 10204 grutr 10243 grupw 10245 grupr 10247 gruurn 10248 ingru 10265 indpi 10357 eliooord 12828 fzrev3i 13013 elfzole1 13085 elfzolt2 13086 bcp1nk 13717 rere 14519 nn0abscl 14710 climcl 14894 rlimcl 14898 rlimdm 14946 o1res 14955 rlimdmo1 15012 climcau 15065 caucvgb 15074 fprodcnv 15375 cshws0 16483 restsspw 16753 mreiincl 16915 catidex 16993 catcocl 17004 catass 17005 homa1 17353 homahom2 17354 odulat 17811 dlatjmdi 17863 psrel 17869 psref2 17870 pstr2 17871 reldir 17899 dirdm 17900 dirref 17901 dirtr 17902 dirge 17903 mgmcl 17911 submss 18030 subm0cl 18032 submcl 18033 submmnd 18034 efmndbasf 18096 subgsubm 18358 symgbasf1o 18560 symginv 18587 psgneu 18691 odmulg 18740 frgpnabl 19053 dprdgrp 19185 dprdf 19186 abvfge0 19651 abveq0 19655 abvmul 19658 abvtri 19659 lbsss 19907 lbssp 19909 lbsind 19910 domnchr 20290 cssi 20439 linds1 20565 linds2 20566 lindsind 20572 opsrtoslem2 20806 opsrso 20808 mdetunilem9 21310 uniopn 21587 iunopn 21588 inopn 21589 fiinopn 21591 eltpsg 21633 basis1 21640 basis2 21641 eltg4i 21650 lmff 21991 t1sep2 22059 cmpfii 22099 ptfinfin 22209 kqhmph 22509 fbasne0 22520 0nelfb 22521 fbsspw 22522 fbasssin 22526 ufli 22604 uffixfr 22613 elfm 22637 fclsopni 22705 fclselbas 22706 ustssxp 22895 ustbasel 22897 ustincl 22898 ustdiag 22899 ustinvel 22900 ustexhalf 22901 ustfilxp 22903 ustbas2 22916 ustbas 22918 psmetf 22998 psmet0 23000 psmettri2 23001 metflem 23020 xmetf 23021 xmeteq0 23030 xmettri2 23032 tmsxms 23178 tmsms 23179 metustsym 23247 tngnrg 23366 cncff 23584 cncfi 23585 cfili 23958 iscmet3lem2 23982 mbfres 24334 mbfimaopnlem 24345 limcresi 24574 dvcnp2 24609 ulmcl 25065 ulmf 25066 ulmcau 25079 pserulm 25106 pserdvlem2 25112 sinq34lt0t 25191 logtayl 25340 dchrmhm 25914 lgsdir2lem2 25999 2sqlem9 26100 mulog2sum 26210 eleei 26780 uhgrf 26944 ushgrf 26945 upgrf 26968 umgrf 26980 uspgrf 27036 usgrf 27037 usgrfs 27039 nbcplgr 27313 clwlkcompim 27658 tncp 28350 eulplig 28357 grpofo 28371 grpolidinv 28373 grpoass 28375 nvvop 28481 phpar 28696 pjch1 29542 fzne1 30623 toslub 30767 tosglb 30769 orngsqr 31019 fldextsubrg 31237 fldextress 31238 zhmnrg 31426 issgon 31600 measfrge0 31680 measvnul 31683 measvun 31686 fzssfzo 32027 bnj916 32423 bnj983 32441 cplgredgex 32588 acycgrcycl 32615 mfsdisj 33018 mtyf2 33019 maxsta 33022 mvtinf 33023 orderseqlem 33345 hfun 34019 hfsn 34020 hfelhf 34022 hfuni 34025 hfpw 34026 fneuni 34075 curryset 34652 mptsnunlem 35025 heibor1lem 35517 heiborlem1 35519 heiborlem3 35521 opidonOLD 35560 isexid2 35563 elrelsrelim 36158 eqvrelqsel 36281 elpcliN 37459 lnrfg 40426 pwinfi2 40624 frege55lem1c 40980 gneispacef 41201 gneispacef2 41202 gneispacern2 41205 gneispace0nelrn 41206 gneispaceel 41209 gneispacess 41211 mnuop123d 41333 trintALTVD 41949 trintALT 41950 eliuniin 42098 eliuniin2 42118 disjrnmpt2 42175 fvelima2 42256 stoweidlem35 43033 saluncl 43315 saldifcl 43317 0sal 43318 sge0resplit 43401 omedm 43494 funressneu 43995 afvelrnb0 44078 afvelima 44081 rlimdmafv 44091 funressndmafv2rn 44137 rlimdmafv2 44172 elsetpreimafv 44260 oexpnegALTV 44552 isisomgr 44699 submgmss 44769 submgmcl 44771 submgmmgm 44772 asslawass 44810 linindsi 45211 |
Copyright terms: Public domain | W3C validator |