| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ibi | Structured version Visualization version GIF version | ||
| Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 17-Oct-2003.) |
| Ref | Expression |
|---|---|
| ibi.1 | ⊢ (𝜑 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ibi | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | ibi.1 | . 2 ⊢ (𝜑 → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | mpbid 232 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: ibir 268 elab3gf 3636 elab3g 3637 elimhyp 4542 elimhyp2v 4543 elimhyp3v 4544 elimhyp4v 4545 elpwi 4558 elsni 4594 elpri 4601 eltpi 4642 snssi 4761 prssi 4774 snelpwi 5389 prelpwi 5392 elxpi 5643 releldmb 5892 relelrnb 5893 elrnmpt2d 5912 eloni 6323 limuni2 6376 funeu 6513 fneu 6598 fvelima2 6882 fvelima 6895 fvelimad 6897 eloprabi 8003 fo2ndf 8059 orderseqlem 8095 tfrlem9 8312 oeeulem 8524 elqsi 8698 qsel 8728 ecopovsym 8751 elpmi 8778 elmapi 8781 pmsspw 8809 brdomi 8890 en0 8949 en0r 8951 en1 8955 mapdom1 9064 rexdif1en 9079 ominf 9157 unblem2 9186 unfilem1 9198 fodomfir 9221 fiin 9315 brwdomi 9463 canthwdom 9474 brwdom3i 9478 unxpwdom 9484 scott0 9788 acni 9945 djuinf 10089 pwdjudom 10115 fin1ai 10193 fin2i 10195 fin4i 10198 ssfin3ds 10230 fin23lem17 10238 fin23lem38 10249 fin23lem39 10250 isfin32i 10265 fin34 10290 isfin7-2 10296 fin1a2lem13 10312 fin12 10313 gchi 10524 wuntr 10605 wununi 10606 wunpw 10607 wunpr 10609 wun0 10618 tskpwss 10652 tskpw 10653 tsken 10654 grutr 10693 grupw 10695 grupr 10697 gruurn 10698 ingru 10715 indpi 10807 eliooord 13309 fzrev3i 13495 fzne1 13508 elfzole1 13571 elfzolt2 13572 bcp1nk 14228 rere 15033 nn0abscl 15223 climcl 15410 rlimcl 15414 rlimdm 15462 o1res 15471 rlimdmo1 15529 climcau 15582 caucvgb 15591 fprodcnv 15894 cshws0 17017 restsspw 17339 mreiincl 17502 catidex 17584 catcocl 17595 catass 17596 homa1 17948 homahom2 17949 odulat 18345 dlatjmdi 18436 psrel 18479 psref2 18480 pstr2 18481 reldir 18509 dirdm 18510 dirref 18511 dirtr 18512 dirge 18513 chnub 18532 mgmcl 18555 submgmss 18617 submgmcl 18619 submgmmgm 18620 submss 18721 subm0cl 18723 submcl 18724 submmnd 18725 efmndbasf 18787 subgsubm 19065 symgbasf1o 19291 symginv 19318 psgneu 19422 odmulg 19472 frgpnabl 19791 dprdgrp 19923 dprdf 19924 abvfge0 20733 abveq0 20737 abvmul 20740 abvtri 20741 orngsqr 20785 lbsss 21015 lbssp 21017 lbsind 21018 domnchr 21473 cssi 21625 linds1 21751 linds2 21752 lindsind 21758 opsrtoslem2 21994 opsrso 21996 mdetunilem9 22538 uniopn 22815 iunopn 22816 inopn 22817 fiinopn 22819 eltpsg 22861 basis1 22868 basis2 22869 eltg4i 22878 lmff 23219 t1sep2 23287 cmpfii 23327 ptfinfin 23437 kqhmph 23737 fbasne0 23748 0nelfb 23749 fbsspw 23750 fbasssin 23754 ufli 23832 uffixfr 23841 elfm 23865 fclsopni 23933 fclselbas 23934 ustssxp 24123 ustbasel 24125 ustincl 24126 ustdiag 24127 ustinvel 24128 ustexhalf 24129 ustfilxp 24131 ustbas2 24143 ustbas 24145 psmetf 24224 psmet0 24226 psmettri2 24227 metflem 24246 xmetf 24247 xmeteq0 24256 xmettri2 24258 tmsxms 24404 tmsms 24405 metustsym 24473 tngnrg 24592 cncff 24816 cncfi 24817 cfili 25198 iscmet3lem2 25222 mbfres 25575 mbfimaopnlem 25586 limcresi 25816 dvcnp2 25851 dvcnp2OLD 25852 ulmcl 26320 ulmf 26321 ulmcau 26334 pserulm 26361 pserdvlem2 26368 sinq34lt0t 26448 logtayl 26599 dchrmhm 27182 lgsdir2lem2 27267 2sqlem9 27368 mulog2sum 27478 newbdayim 27851 eleei 28879 uhgrf 29044 ushgrf 29045 upgrf 29068 umgrf 29080 uspgrf 29136 usgrf 29137 usgrfs 29139 nbcplgr 29416 clwlkcompim 29762 tncp 30462 eulplig 30469 grpofo 30483 grpolidinv 30485 grpoass 30487 nvvop 30593 phpar 30808 pjch1 31654 toslub 32963 tosglb 32965 exsslsb 33632 fldextsubrg 33685 fldextress 33687 zhmnrg 34001 issgon 34159 measfrge0 34239 measvnul 34242 measvun 34245 fzssfzo 34575 bnj916 34968 bnj983 34986 cplgredgex 35188 acycgrcycl 35214 mfsdisj 35617 mtyf2 35618 maxsta 35621 mvtinf 35622 r1peuqusdeg1 35710 hfun 36245 hfsn 36246 hfelhf 36248 hfuni 36251 hfpw 36252 fneuni 36414 curryset 37013 mptsnunlem 37405 heibor1lem 37872 heiborlem1 37874 heiborlem3 37876 opidonOLD 37915 isexid2 37918 elrelsrelim 38490 presucmap 38530 eqvrelqsel 38735 elpcliN 40015 lnrfg 43239 sdomne0 43533 sdomne0d 43534 pwinfi2 43682 frege55lem1c 44036 gneispacef 44255 gneispacef2 44256 gneispacern2 44259 gneispace0nelrn 44260 gneispaceel 44263 gneispacess 44265 mnuop123d 44382 trintALTVD 44999 trintALT 45000 eliuniin 45223 eliuniin2 45244 disjrnmpt2 45312 stoweidlem35 46160 saluncl 46442 saldifcl 46444 0sal 46445 sge0resplit 46531 omedm 46624 funressneu 47174 afvelrnb0 47291 afvelima 47294 rlimdmafv 47304 funressndmafv2rn 47350 rlimdmafv2 47385 elsetpreimafv 47512 oexpnegALTV 47804 gricbri 48043 grlimprop2 48113 grilcbri 48136 asslawass 48320 linindsi 48575 inisegn0a 48963 eloprab1st2nd 48995 uobrcl 49321 uobeq2 49529 isinito2 49627 basrestermcfolem 49699 discsnterm 49702 islmd 49793 |
| Copyright terms: Public domain | W3C validator |