![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ibi | Structured version Visualization version GIF version |
Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 17-Oct-2003.) |
Ref | Expression |
---|---|
ibi.1 | ⊢ (𝜑 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ibi | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | ibi.1 | . 2 ⊢ (𝜑 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | mpbid 232 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: ibir 268 elab3gf 3686 elab3g 3687 elimhyp 4595 elimhyp2v 4596 elimhyp3v 4597 elimhyp4v 4598 elpwi 4611 elsni 4647 elpri 4653 eltpi 4692 snssi 4812 prssi 4825 snelpwi 5453 prelpwi 5457 elxpi 5710 releldmb 5959 relelrnb 5960 elrnmpt2d 5979 eloni 6395 limuni2 6447 funeu 6592 fneu 6678 fvelima 6973 fvelimad 6975 eloprabi 8086 fo2ndf 8144 orderseqlem 8180 tfrlem9 8423 oeeulem 8637 elqsi 8808 qsel 8834 ecopovsym 8857 elpmi 8884 elmapi 8887 pmsspw 8915 brdomi 8997 brdomiOLD 8998 en0 9056 en0r 9058 en1 9062 undomOLD 9098 mapdom1 9180 rexdif1en 9196 ominf 9291 ominfOLD 9292 unblem2 9326 unfilem1 9340 fodomfir 9365 fiin 9459 brwdomi 9605 canthwdom 9616 brwdom3i 9620 unxpwdom 9626 scott0 9923 acni 10082 djuinf 10226 pwdjudom 10252 fin1ai 10330 fin2i 10332 fin4i 10335 ssfin3ds 10367 fin23lem17 10375 fin23lem38 10386 fin23lem39 10387 isfin32i 10402 fin34 10427 isfin7-2 10433 fin1a2lem13 10449 fin12 10450 gchi 10661 wuntr 10742 wununi 10743 wunpw 10744 wunpr 10746 wun0 10755 tskpwss 10789 tskpw 10790 tsken 10791 grutr 10830 grupw 10832 grupr 10834 gruurn 10835 ingru 10852 indpi 10944 eliooord 13442 fzrev3i 13627 fzne1 13640 elfzole1 13703 elfzolt2 13704 bcp1nk 14352 rere 15157 nn0abscl 15347 climcl 15531 rlimcl 15535 rlimdm 15583 o1res 15592 rlimdmo1 15650 climcau 15703 caucvgb 15712 fprodcnv 16015 cshws0 17135 restsspw 17477 mreiincl 17640 catidex 17718 catcocl 17729 catass 17730 homa1 18090 homahom2 18091 odulat 18492 dlatjmdi 18583 psrel 18626 psref2 18627 pstr2 18628 reldir 18656 dirdm 18657 dirref 18658 dirtr 18659 dirge 18660 mgmcl 18668 submgmss 18730 submgmcl 18732 submgmmgm 18733 submss 18834 subm0cl 18836 submcl 18837 submmnd 18838 efmndbasf 18900 subgsubm 19178 symgbasf1o 19406 symginv 19434 psgneu 19538 odmulg 19588 frgpnabl 19907 dprdgrp 20039 dprdf 20040 abvfge0 20831 abveq0 20835 abvmul 20838 abvtri 20839 lbsss 21093 lbssp 21095 lbsind 21096 domnchr 21564 cssi 21719 linds1 21847 linds2 21848 lindsind 21854 opsrtoslem2 22097 opsrso 22099 mdetunilem9 22641 uniopn 22918 iunopn 22919 inopn 22920 fiinopn 22922 eltpsg 22964 eltpsgOLD 22965 basis1 22972 basis2 22973 eltg4i 22982 lmff 23324 t1sep2 23392 cmpfii 23432 ptfinfin 23542 kqhmph 23842 fbasne0 23853 0nelfb 23854 fbsspw 23855 fbasssin 23859 ufli 23937 uffixfr 23946 elfm 23970 fclsopni 24038 fclselbas 24039 ustssxp 24228 ustbasel 24230 ustincl 24231 ustdiag 24232 ustinvel 24233 ustexhalf 24234 ustfilxp 24236 ustbas2 24249 ustbas 24251 psmetf 24331 psmet0 24333 psmettri2 24334 metflem 24353 xmetf 24354 xmeteq0 24363 xmettri2 24365 tmsxms 24514 tmsms 24515 metustsym 24583 tngnrg 24710 cncff 24932 cncfi 24933 cfili 25315 iscmet3lem2 25339 mbfres 25692 mbfimaopnlem 25703 limcresi 25934 dvcnp2 25969 dvcnp2OLD 25970 ulmcl 26438 ulmf 26439 ulmcau 26452 pserulm 26479 pserdvlem2 26486 sinq34lt0t 26565 logtayl 26716 dchrmhm 27299 lgsdir2lem2 27384 2sqlem9 27485 mulog2sum 27595 eleei 28926 uhgrf 29093 ushgrf 29094 upgrf 29117 umgrf 29129 uspgrf 29185 usgrf 29186 usgrfs 29188 nbcplgr 29465 clwlkcompim 29812 tncp 30506 eulplig 30513 grpofo 30527 grpolidinv 30529 grpoass 30531 nvvop 30637 phpar 30852 pjch1 31698 toslub 32947 tosglb 32949 chnub 32985 orngsqr 33313 fldextsubrg 33678 fldextress 33679 zhmnrg 33927 issgon 34103 measfrge0 34183 measvnul 34186 measvun 34189 fzssfzo 34532 bnj916 34925 bnj983 34943 cplgredgex 35104 acycgrcycl 35131 mfsdisj 35534 mtyf2 35535 maxsta 35538 mvtinf 35539 r1peuqusdeg1 35627 hfun 36159 hfsn 36160 hfelhf 36162 hfuni 36165 hfpw 36166 fneuni 36329 curryset 36928 mptsnunlem 37320 heibor1lem 37795 heiborlem1 37797 heiborlem3 37799 opidonOLD 37838 isexid2 37841 elrelsrelim 38469 eqvrelqsel 38597 elpcliN 39875 lnrfg 43107 sdomne0 43402 sdomne0d 43403 pwinfi2 43551 frege55lem1c 43905 gneispacef 44124 gneispacef2 44125 gneispacern2 44128 gneispace0nelrn 44129 gneispaceel 44132 gneispacess 44134 mnuop123d 44257 trintALTVD 44877 trintALT 44878 eliuniin 45038 eliuniin2 45059 disjrnmpt2 45130 fvelima2 45204 stoweidlem35 45990 saluncl 46272 saldifcl 46274 0sal 46275 sge0resplit 46361 omedm 46454 funressneu 46996 afvelrnb0 47113 afvelima 47116 rlimdmafv 47126 funressndmafv2rn 47172 rlimdmafv2 47207 elsetpreimafv 47309 oexpnegALTV 47601 gricbri 47822 grlimprop2 47888 grilcbri 47904 asslawass 48036 linindsi 48292 |
Copyright terms: Public domain | W3C validator |