Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ibi | Structured version Visualization version GIF version |
Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 17-Oct-2003.) |
Ref | Expression |
---|---|
ibi.1 | ⊢ (𝜑 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ibi | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | ibi.1 | . 2 ⊢ (𝜑 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | mpbid 231 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: ibir 267 elab3gf 3616 elab3g 3617 elimhyp 4525 elimhyp2v 4526 elimhyp3v 4527 elimhyp4v 4528 elpwi 4543 elsni 4579 elpri 4584 eltpi 4624 snssi 4742 prssi 4755 prelpwi 5364 elxpi 5612 releldmb 5858 relelrnb 5859 elrnmpt2d 5875 eloni 6280 limuni2 6331 funeu 6466 fneu 6552 fvelima 6844 fvelimad 6845 eloprabi 7912 fo2ndf 7971 tfrlem9 8225 oeeulem 8441 elqsi 8568 qsel 8594 ecopovsym 8617 elpmi 8643 elmapi 8646 pmsspw 8674 brdomi 8757 brdomiOLD 8758 en0 8812 en0r 8815 en1 8820 undomOLD 8856 mapdom1 8938 ominf 9044 unblem2 9076 unfilem1 9087 fiin 9190 brwdomi 9336 canthwdom 9347 brwdom3i 9351 unxpwdom 9357 scott0 9653 acni 9810 djuinf 9953 pwdjudom 9981 fin1ai 10058 fin2i 10060 fin4i 10063 ssfin3ds 10095 fin23lem17 10103 fin23lem38 10114 fin23lem39 10115 isfin32i 10130 fin34 10155 isfin7-2 10161 fin1a2lem13 10177 fin12 10178 gchi 10389 wuntr 10470 wununi 10471 wunpw 10472 wunpr 10474 wun0 10483 tskpwss 10517 tskpw 10518 tsken 10519 grutr 10558 grupw 10560 grupr 10562 gruurn 10563 ingru 10580 indpi 10672 eliooord 13147 fzrev3i 13332 elfzole1 13404 elfzolt2 13405 bcp1nk 14040 rere 14842 nn0abscl 15033 climcl 15217 rlimcl 15221 rlimdm 15269 o1res 15278 rlimdmo1 15336 climcau 15391 caucvgb 15400 fprodcnv 15702 cshws0 16812 restsspw 17151 mreiincl 17314 catidex 17392 catcocl 17403 catass 17404 homa1 17761 homahom2 17762 odulat 18162 dlatjmdi 18253 psrel 18296 psref2 18297 pstr2 18298 reldir 18326 dirdm 18327 dirref 18328 dirtr 18329 dirge 18330 mgmcl 18338 submss 18457 subm0cl 18459 submcl 18460 submmnd 18461 efmndbasf 18523 subgsubm 18786 symgbasf1o 18991 symginv 19019 psgneu 19123 odmulg 19172 frgpnabl 19485 dprdgrp 19617 dprdf 19618 abvfge0 20091 abveq0 20095 abvmul 20098 abvtri 20099 lbsss 20348 lbssp 20350 lbsind 20351 domnchr 20745 cssi 20898 linds1 21026 linds2 21027 lindsind 21033 opsrtoslem2 21272 opsrso 21274 mdetunilem9 21778 uniopn 22055 iunopn 22056 inopn 22057 fiinopn 22059 eltpsg 22101 eltpsgOLD 22102 basis1 22109 basis2 22110 eltg4i 22119 lmff 22461 t1sep2 22529 cmpfii 22569 ptfinfin 22679 kqhmph 22979 fbasne0 22990 0nelfb 22991 fbsspw 22992 fbasssin 22996 ufli 23074 uffixfr 23083 elfm 23107 fclsopni 23175 fclselbas 23176 ustssxp 23365 ustbasel 23367 ustincl 23368 ustdiag 23369 ustinvel 23370 ustexhalf 23371 ustfilxp 23373 ustbas2 23386 ustbas 23388 psmetf 23468 psmet0 23470 psmettri2 23471 metflem 23490 xmetf 23491 xmeteq0 23500 xmettri2 23502 tmsxms 23651 tmsms 23652 metustsym 23720 tngnrg 23847 cncff 24065 cncfi 24066 cfili 24441 iscmet3lem2 24465 mbfres 24817 mbfimaopnlem 24828 limcresi 25058 dvcnp2 25093 ulmcl 25549 ulmf 25550 ulmcau 25563 pserulm 25590 pserdvlem2 25596 sinq34lt0t 25675 logtayl 25824 dchrmhm 26398 lgsdir2lem2 26483 2sqlem9 26584 mulog2sum 26694 eleei 27274 uhgrf 27441 ushgrf 27442 upgrf 27465 umgrf 27477 uspgrf 27533 usgrf 27534 usgrfs 27536 nbcplgr 27810 clwlkcompim 28157 tncp 28849 eulplig 28856 grpofo 28870 grpolidinv 28872 grpoass 28874 nvvop 28980 phpar 29195 pjch1 30041 fzne1 31118 toslub 31260 tosglb 31262 orngsqr 31512 fldextsubrg 31735 fldextress 31736 zhmnrg 31926 issgon 32100 measfrge0 32180 measvnul 32183 measvun 32186 fzssfzo 32527 bnj916 32922 bnj983 32940 cplgredgex 33091 acycgrcycl 33118 mfsdisj 33521 mtyf2 33522 maxsta 33525 mvtinf 33526 orderseqlem 33810 hfun 34489 hfsn 34490 hfelhf 34492 hfuni 34495 hfpw 34496 fneuni 34545 curryset 35144 mptsnunlem 35518 heibor1lem 35976 heiborlem1 35978 heiborlem3 35980 opidonOLD 36019 isexid2 36022 elrelsrelim 36613 eqvrelqsel 36736 elpcliN 37914 lnrfg 40951 pwinfi2 41176 frege55lem1c 41531 gneispacef 41752 gneispacef2 41753 gneispacern2 41756 gneispace0nelrn 41757 gneispaceel 41760 gneispacess 41762 mnuop123d 41887 trintALTVD 42507 trintALT 42508 eliuniin 42656 eliuniin2 42676 disjrnmpt2 42733 fvelima2 42813 stoweidlem35 43583 saluncl 43865 saldifcl 43867 0sal 43868 sge0resplit 43951 omedm 44044 funressneu 44552 afvelrnb0 44667 afvelima 44670 rlimdmafv 44680 funressndmafv2rn 44726 rlimdmafv2 44761 elsetpreimafv 44848 oexpnegALTV 45140 isisomgr 45287 submgmss 45357 submgmcl 45359 submgmmgm 45360 asslawass 45398 linindsi 45799 |
Copyright terms: Public domain | W3C validator |