Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ibi | Structured version Visualization version GIF version |
Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 17-Oct-2003.) |
Ref | Expression |
---|---|
ibi.1 | ⊢ (𝜑 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ibi | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | ibi.1 | . 2 ⊢ (𝜑 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | mpbid 231 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: ibir 268 elab3gf 3628 elab3g 3629 elimhyp 4542 elimhyp2v 4543 elimhyp3v 4544 elimhyp4v 4545 elpwi 4558 elsni 4594 elpri 4599 eltpi 4639 snssi 4759 prssi 4772 snelpwi 5392 prelpwi 5396 elxpi 5646 releldmb 5891 relelrnb 5892 elrnmpt2d 5908 eloni 6316 limuni2 6367 funeu 6513 fneu 6599 fvelima 6895 fvelimad 6896 eloprabi 7975 fo2ndf 8033 orderseqlem 8048 tfrlem9 8290 oeeulem 8507 elqsi 8634 qsel 8660 ecopovsym 8683 elpmi 8709 elmapi 8712 pmsspw 8740 brdomi 8823 brdomiOLD 8824 en0 8882 en0r 8885 en1 8890 undomOLD 8929 mapdom1 9011 rexdif1en 9027 ominf 9127 ominfOLD 9128 unblem2 9165 unfilem1 9179 fiin 9283 brwdomi 9429 canthwdom 9440 brwdom3i 9444 unxpwdom 9450 scott0 9747 acni 9906 djuinf 10049 pwdjudom 10077 fin1ai 10154 fin2i 10156 fin4i 10159 ssfin3ds 10191 fin23lem17 10199 fin23lem38 10210 fin23lem39 10211 isfin32i 10226 fin34 10251 isfin7-2 10257 fin1a2lem13 10273 fin12 10274 gchi 10485 wuntr 10566 wununi 10567 wunpw 10568 wunpr 10570 wun0 10579 tskpwss 10613 tskpw 10614 tsken 10615 grutr 10654 grupw 10656 grupr 10658 gruurn 10659 ingru 10676 indpi 10768 eliooord 13243 fzrev3i 13428 elfzole1 13500 elfzolt2 13501 bcp1nk 14136 rere 14932 nn0abscl 15123 climcl 15307 rlimcl 15311 rlimdm 15359 o1res 15368 rlimdmo1 15426 climcau 15481 caucvgb 15490 fprodcnv 15792 cshws0 16900 restsspw 17239 mreiincl 17402 catidex 17480 catcocl 17491 catass 17492 homa1 17849 homahom2 17850 odulat 18250 dlatjmdi 18341 psrel 18384 psref2 18385 pstr2 18386 reldir 18414 dirdm 18415 dirref 18416 dirtr 18417 dirge 18418 mgmcl 18426 submss 18545 subm0cl 18547 submcl 18548 submmnd 18549 efmndbasf 18610 subgsubm 18873 symgbasf1o 19078 symginv 19106 psgneu 19210 odmulg 19259 frgpnabl 19571 dprdgrp 19702 dprdf 19703 abvfge0 20187 abveq0 20191 abvmul 20194 abvtri 20195 lbsss 20444 lbssp 20446 lbsind 20447 domnchr 20841 cssi 20994 linds1 21122 linds2 21123 lindsind 21129 opsrtoslem2 21368 opsrso 21370 mdetunilem9 21874 uniopn 22151 iunopn 22152 inopn 22153 fiinopn 22155 eltpsg 22197 eltpsgOLD 22198 basis1 22205 basis2 22206 eltg4i 22215 lmff 22557 t1sep2 22625 cmpfii 22665 ptfinfin 22775 kqhmph 23075 fbasne0 23086 0nelfb 23087 fbsspw 23088 fbasssin 23092 ufli 23170 uffixfr 23179 elfm 23203 fclsopni 23271 fclselbas 23272 ustssxp 23461 ustbasel 23463 ustincl 23464 ustdiag 23465 ustinvel 23466 ustexhalf 23467 ustfilxp 23469 ustbas2 23482 ustbas 23484 psmetf 23564 psmet0 23566 psmettri2 23567 metflem 23586 xmetf 23587 xmeteq0 23596 xmettri2 23598 tmsxms 23747 tmsms 23748 metustsym 23816 tngnrg 23943 cncff 24161 cncfi 24162 cfili 24537 iscmet3lem2 24561 mbfres 24913 mbfimaopnlem 24924 limcresi 25154 dvcnp2 25189 ulmcl 25645 ulmf 25646 ulmcau 25659 pserulm 25686 pserdvlem2 25692 sinq34lt0t 25771 logtayl 25920 dchrmhm 26494 lgsdir2lem2 26579 2sqlem9 26680 mulog2sum 26790 eleei 27553 uhgrf 27720 ushgrf 27721 upgrf 27744 umgrf 27756 uspgrf 27812 usgrf 27813 usgrfs 27815 nbcplgr 28089 clwlkcompim 28435 tncp 29127 eulplig 29134 grpofo 29148 grpolidinv 29150 grpoass 29152 nvvop 29258 phpar 29473 pjch1 30319 fzne1 31394 toslub 31536 tosglb 31538 orngsqr 31801 fldextsubrg 32022 fldextress 32023 zhmnrg 32213 issgon 32387 measfrge0 32467 measvnul 32470 measvun 32473 fzssfzo 32816 bnj916 33210 bnj983 33228 cplgredgex 33379 acycgrcycl 33406 mfsdisj 33809 mtyf2 33810 maxsta 33813 mvtinf 33814 hfun 34617 hfsn 34618 hfelhf 34620 hfuni 34623 hfpw 34624 fneuni 34673 curryset 35271 mptsnunlem 35663 heibor1lem 36123 heiborlem1 36125 heiborlem3 36127 opidonOLD 36166 isexid2 36169 elrelsrelim 36806 eqvrelqsel 36934 elpcliN 38212 lnrfg 41258 sdomne0 41394 sdomne0d 41395 pwinfi2 41543 frege55lem1c 41897 gneispacef 42118 gneispacef2 42119 gneispacern2 42122 gneispace0nelrn 42123 gneispaceel 42126 gneispacess 42128 mnuop123d 42253 trintALTVD 42873 trintALT 42874 eliuniin 43021 eliuniin2 43042 disjrnmpt2 43105 fvelima2 43186 stoweidlem35 43964 saluncl 44246 saldifcl 44248 0sal 44249 sge0resplit 44333 omedm 44426 funressneu 44959 afvelrnb0 45074 afvelima 45077 rlimdmafv 45087 funressndmafv2rn 45133 rlimdmafv2 45168 elsetpreimafv 45255 oexpnegALTV 45547 isisomgr 45694 submgmss 45764 submgmcl 45766 submgmmgm 45767 asslawass 45805 linindsi 46206 |
Copyright terms: Public domain | W3C validator |