| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ibi | Structured version Visualization version GIF version | ||
| Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 17-Oct-2003.) |
| Ref | Expression |
|---|---|
| ibi.1 | ⊢ (𝜑 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ibi | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | ibi.1 | . 2 ⊢ (𝜑 → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | mpbid 232 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: ibir 268 elab3gf 3651 elab3g 3652 elimhyp 4554 elimhyp2v 4555 elimhyp3v 4556 elimhyp4v 4557 elpwi 4570 elsni 4606 elpri 4613 eltpi 4652 snssi 4772 prssi 4785 snelpwi 5403 prelpwi 5407 elxpi 5660 releldmb 5910 relelrnb 5911 elrnmpt2d 5930 eloni 6342 limuni2 6395 funeu 6541 fneu 6628 fvelima2 6913 fvelima 6926 fvelimad 6928 eloprabi 8042 fo2ndf 8100 orderseqlem 8136 tfrlem9 8353 oeeulem 8565 elqsi 8739 qsel 8769 ecopovsym 8792 elpmi 8819 elmapi 8822 pmsspw 8850 brdomi 8931 en0 8989 en0r 8991 en1 8995 mapdom1 9106 rexdif1en 9122 ominf 9205 ominfOLD 9206 unblem2 9240 unfilem1 9254 fodomfir 9279 fiin 9373 brwdomi 9521 canthwdom 9532 brwdom3i 9536 unxpwdom 9542 scott0 9839 acni 9998 djuinf 10142 pwdjudom 10168 fin1ai 10246 fin2i 10248 fin4i 10251 ssfin3ds 10283 fin23lem17 10291 fin23lem38 10302 fin23lem39 10303 isfin32i 10318 fin34 10343 isfin7-2 10349 fin1a2lem13 10365 fin12 10366 gchi 10577 wuntr 10658 wununi 10659 wunpw 10660 wunpr 10662 wun0 10671 tskpwss 10705 tskpw 10706 tsken 10707 grutr 10746 grupw 10748 grupr 10750 gruurn 10751 ingru 10768 indpi 10860 eliooord 13366 fzrev3i 13552 fzne1 13565 elfzole1 13628 elfzolt2 13629 bcp1nk 14282 rere 15088 nn0abscl 15278 climcl 15465 rlimcl 15469 rlimdm 15517 o1res 15526 rlimdmo1 15584 climcau 15637 caucvgb 15646 fprodcnv 15949 cshws0 17072 restsspw 17394 mreiincl 17557 catidex 17635 catcocl 17646 catass 17647 homa1 17999 homahom2 18000 odulat 18394 dlatjmdi 18485 psrel 18528 psref2 18529 pstr2 18530 reldir 18558 dirdm 18559 dirref 18560 dirtr 18561 dirge 18562 mgmcl 18570 submgmss 18632 submgmcl 18634 submgmmgm 18635 submss 18736 subm0cl 18738 submcl 18739 submmnd 18740 efmndbasf 18802 subgsubm 19080 symgbasf1o 19305 symginv 19332 psgneu 19436 odmulg 19486 frgpnabl 19805 dprdgrp 19937 dprdf 19938 abvfge0 20723 abveq0 20727 abvmul 20730 abvtri 20731 lbsss 20984 lbssp 20986 lbsind 20987 domnchr 21442 cssi 21593 linds1 21719 linds2 21720 lindsind 21726 opsrtoslem2 21963 opsrso 21965 mdetunilem9 22507 uniopn 22784 iunopn 22785 inopn 22786 fiinopn 22788 eltpsg 22830 basis1 22837 basis2 22838 eltg4i 22847 lmff 23188 t1sep2 23256 cmpfii 23296 ptfinfin 23406 kqhmph 23706 fbasne0 23717 0nelfb 23718 fbsspw 23719 fbasssin 23723 ufli 23801 uffixfr 23810 elfm 23834 fclsopni 23902 fclselbas 23903 ustssxp 24092 ustbasel 24094 ustincl 24095 ustdiag 24096 ustinvel 24097 ustexhalf 24098 ustfilxp 24100 ustbas2 24113 ustbas 24115 psmetf 24194 psmet0 24196 psmettri2 24197 metflem 24216 xmetf 24217 xmeteq0 24226 xmettri2 24228 tmsxms 24374 tmsms 24375 metustsym 24443 tngnrg 24562 cncff 24786 cncfi 24787 cfili 25168 iscmet3lem2 25192 mbfres 25545 mbfimaopnlem 25556 limcresi 25786 dvcnp2 25821 dvcnp2OLD 25822 ulmcl 26290 ulmf 26291 ulmcau 26304 pserulm 26331 pserdvlem2 26338 sinq34lt0t 26418 logtayl 26569 dchrmhm 27152 lgsdir2lem2 27237 2sqlem9 27338 mulog2sum 27448 newbdayim 27814 eleei 28824 uhgrf 28989 ushgrf 28990 upgrf 29013 umgrf 29025 uspgrf 29081 usgrf 29082 usgrfs 29084 nbcplgr 29361 clwlkcompim 29710 tncp 30407 eulplig 30414 grpofo 30428 grpolidinv 30430 grpoass 30432 nvvop 30538 phpar 30753 pjch1 31599 toslub 32899 tosglb 32901 chnub 32938 orngsqr 33282 exsslsb 33592 fldextsubrg 33645 fldextress 33647 zhmnrg 33955 issgon 34113 measfrge0 34193 measvnul 34196 measvun 34199 fzssfzo 34530 bnj916 34923 bnj983 34941 cplgredgex 35108 acycgrcycl 35134 mfsdisj 35537 mtyf2 35538 maxsta 35541 mvtinf 35542 r1peuqusdeg1 35630 hfun 36166 hfsn 36167 hfelhf 36169 hfuni 36172 hfpw 36173 fneuni 36335 curryset 36934 mptsnunlem 37326 heibor1lem 37803 heiborlem1 37805 heiborlem3 37807 opidonOLD 37846 isexid2 37849 elrelsrelim 38479 eqvrelqsel 38607 elpcliN 39887 lnrfg 43108 sdomne0 43402 sdomne0d 43403 pwinfi2 43551 frege55lem1c 43905 gneispacef 44124 gneispacef2 44125 gneispacern2 44128 gneispace0nelrn 44129 gneispaceel 44132 gneispacess 44134 mnuop123d 44251 trintALTVD 44869 trintALT 44870 eliuniin 45093 eliuniin2 45114 disjrnmpt2 45182 stoweidlem35 46033 saluncl 46315 saldifcl 46317 0sal 46318 sge0resplit 46404 omedm 46497 funressneu 47048 afvelrnb0 47165 afvelima 47168 rlimdmafv 47178 funressndmafv2rn 47224 rlimdmafv2 47259 elsetpreimafv 47386 oexpnegALTV 47678 gricbri 47916 grlimprop2 47985 grilcbri 48001 asslawass 48181 linindsi 48436 inisegn0a 48824 eloprab1st2nd 48856 uobrcl 49182 uobeq2 49390 isinito2 49488 basrestermcfolem 49560 discsnterm 49563 islmd 49654 |
| Copyright terms: Public domain | W3C validator |