| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ibi | Structured version Visualization version GIF version | ||
| Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 17-Oct-2003.) |
| Ref | Expression |
|---|---|
| ibi.1 | ⊢ (𝜑 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ibi | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | ibi.1 | . 2 ⊢ (𝜑 → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | mpbid 232 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: ibir 268 elab3gf 3668 elab3g 3669 elimhyp 4571 elimhyp2v 4572 elimhyp3v 4573 elimhyp4v 4574 elpwi 4587 elsni 4623 elpri 4630 eltpi 4669 snssi 4789 prssi 4802 snelpwi 5423 prelpwi 5427 elxpi 5681 releldmb 5931 relelrnb 5932 elrnmpt2d 5951 eloni 6367 limuni2 6420 funeu 6566 fneu 6653 fvelima2 6936 fvelima 6949 fvelimad 6951 eloprabi 8067 fo2ndf 8125 orderseqlem 8161 tfrlem9 8404 oeeulem 8618 elqsi 8789 qsel 8815 ecopovsym 8838 elpmi 8865 elmapi 8868 pmsspw 8896 brdomi 8978 brdomiOLD 8979 en0 9037 en0r 9039 en1 9043 undomOLD 9079 mapdom1 9161 rexdif1en 9177 ominf 9271 ominfOLD 9272 unblem2 9306 unfilem1 9320 fodomfir 9345 fiin 9439 brwdomi 9587 canthwdom 9598 brwdom3i 9602 unxpwdom 9608 scott0 9905 acni 10064 djuinf 10208 pwdjudom 10234 fin1ai 10312 fin2i 10314 fin4i 10317 ssfin3ds 10349 fin23lem17 10357 fin23lem38 10368 fin23lem39 10369 isfin32i 10384 fin34 10409 isfin7-2 10415 fin1a2lem13 10431 fin12 10432 gchi 10643 wuntr 10724 wununi 10725 wunpw 10726 wunpr 10728 wun0 10737 tskpwss 10771 tskpw 10772 tsken 10773 grutr 10812 grupw 10814 grupr 10816 gruurn 10817 ingru 10834 indpi 10926 eliooord 13427 fzrev3i 13613 fzne1 13626 elfzole1 13689 elfzolt2 13690 bcp1nk 14340 rere 15146 nn0abscl 15336 climcl 15520 rlimcl 15524 rlimdm 15572 o1res 15581 rlimdmo1 15639 climcau 15692 caucvgb 15701 fprodcnv 16004 cshws0 17126 restsspw 17450 mreiincl 17613 catidex 17691 catcocl 17702 catass 17703 homa1 18055 homahom2 18056 odulat 18450 dlatjmdi 18541 psrel 18584 psref2 18585 pstr2 18586 reldir 18614 dirdm 18615 dirref 18616 dirtr 18617 dirge 18618 mgmcl 18626 submgmss 18688 submgmcl 18690 submgmmgm 18691 submss 18792 subm0cl 18794 submcl 18795 submmnd 18796 efmndbasf 18858 subgsubm 19136 symgbasf1o 19361 symginv 19388 psgneu 19492 odmulg 19542 frgpnabl 19861 dprdgrp 19993 dprdf 19994 abvfge0 20779 abveq0 20783 abvmul 20786 abvtri 20787 lbsss 21040 lbssp 21042 lbsind 21043 domnchr 21498 cssi 21649 linds1 21775 linds2 21776 lindsind 21782 opsrtoslem2 22019 opsrso 22021 mdetunilem9 22563 uniopn 22840 iunopn 22841 inopn 22842 fiinopn 22844 eltpsg 22886 basis1 22893 basis2 22894 eltg4i 22903 lmff 23244 t1sep2 23312 cmpfii 23352 ptfinfin 23462 kqhmph 23762 fbasne0 23773 0nelfb 23774 fbsspw 23775 fbasssin 23779 ufli 23857 uffixfr 23866 elfm 23890 fclsopni 23958 fclselbas 23959 ustssxp 24148 ustbasel 24150 ustincl 24151 ustdiag 24152 ustinvel 24153 ustexhalf 24154 ustfilxp 24156 ustbas2 24169 ustbas 24171 psmetf 24250 psmet0 24252 psmettri2 24253 metflem 24272 xmetf 24273 xmeteq0 24282 xmettri2 24284 tmsxms 24430 tmsms 24431 metustsym 24499 tngnrg 24618 cncff 24842 cncfi 24843 cfili 25225 iscmet3lem2 25249 mbfres 25602 mbfimaopnlem 25613 limcresi 25843 dvcnp2 25878 dvcnp2OLD 25879 ulmcl 26347 ulmf 26348 ulmcau 26361 pserulm 26388 pserdvlem2 26395 sinq34lt0t 26475 logtayl 26626 dchrmhm 27209 lgsdir2lem2 27294 2sqlem9 27395 mulog2sum 27505 newbdayim 27871 eleei 28881 uhgrf 29046 ushgrf 29047 upgrf 29070 umgrf 29082 uspgrf 29138 usgrf 29139 usgrfs 29141 nbcplgr 29418 clwlkcompim 29767 tncp 30464 eulplig 30471 grpofo 30485 grpolidinv 30487 grpoass 30489 nvvop 30595 phpar 30810 pjch1 31656 toslub 32958 tosglb 32960 chnub 32997 orngsqr 33331 exsslsb 33641 fldextsubrg 33696 fldextress 33698 zhmnrg 34001 issgon 34159 measfrge0 34239 measvnul 34242 measvun 34245 fzssfzo 34576 bnj916 34969 bnj983 34987 cplgredgex 35148 acycgrcycl 35174 mfsdisj 35577 mtyf2 35578 maxsta 35581 mvtinf 35582 r1peuqusdeg1 35670 hfun 36201 hfsn 36202 hfelhf 36204 hfuni 36207 hfpw 36208 fneuni 36370 curryset 36969 mptsnunlem 37361 heibor1lem 37838 heiborlem1 37840 heiborlem3 37842 opidonOLD 37881 isexid2 37884 elrelsrelim 38511 eqvrelqsel 38639 elpcliN 39917 lnrfg 43118 sdomne0 43412 sdomne0d 43413 pwinfi2 43561 frege55lem1c 43915 gneispacef 44134 gneispacef2 44135 gneispacern2 44138 gneispace0nelrn 44139 gneispaceel 44142 gneispacess 44144 mnuop123d 44261 trintALTVD 44879 trintALT 44880 eliuniin 45103 eliuniin2 45124 disjrnmpt2 45192 stoweidlem35 46044 saluncl 46326 saldifcl 46328 0sal 46329 sge0resplit 46415 omedm 46508 funressneu 47056 afvelrnb0 47173 afvelima 47176 rlimdmafv 47186 funressndmafv2rn 47232 rlimdmafv2 47267 elsetpreimafv 47379 oexpnegALTV 47671 gricbri 47909 grlimprop2 47978 grilcbri 47994 asslawass 48148 linindsi 48403 inisegn0a 48794 eloprab1st2nd 48823 isinito2 49364 basrestermcfolem 49428 discsnterm 49431 islmd 49515 |
| Copyright terms: Public domain | W3C validator |