| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ibi | Structured version Visualization version GIF version | ||
| Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 17-Oct-2003.) |
| Ref | Expression |
|---|---|
| ibi.1 | ⊢ (𝜑 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ibi | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | ibi.1 | . 2 ⊢ (𝜑 → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | mpbid 232 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: ibir 268 elab3gf 3640 elab3g 3641 elimhyp 4541 elimhyp2v 4542 elimhyp3v 4543 elimhyp4v 4544 elpwi 4557 elsni 4593 elpri 4600 eltpi 4641 snssi 4760 prssi 4773 snelpwi 5385 prelpwi 5388 elxpi 5638 releldmb 5886 relelrnb 5887 elrnmpt2d 5906 eloni 6316 limuni2 6369 funeu 6506 fneu 6591 fvelima2 6874 fvelima 6887 fvelimad 6889 eloprabi 7995 fo2ndf 8051 orderseqlem 8087 tfrlem9 8304 oeeulem 8516 elqsi 8690 qsel 8720 ecopovsym 8743 elpmi 8770 elmapi 8773 pmsspw 8801 brdomi 8882 en0 8940 en0r 8942 en1 8946 mapdom1 9055 rexdif1en 9070 ominf 9148 unblem2 9177 unfilem1 9189 fodomfir 9212 fiin 9306 brwdomi 9454 canthwdom 9465 brwdom3i 9469 unxpwdom 9475 scott0 9779 acni 9936 djuinf 10080 pwdjudom 10106 fin1ai 10184 fin2i 10186 fin4i 10189 ssfin3ds 10221 fin23lem17 10229 fin23lem38 10240 fin23lem39 10241 isfin32i 10256 fin34 10281 isfin7-2 10287 fin1a2lem13 10303 fin12 10304 gchi 10515 wuntr 10596 wununi 10597 wunpw 10598 wunpr 10600 wun0 10609 tskpwss 10643 tskpw 10644 tsken 10645 grutr 10684 grupw 10686 grupr 10688 gruurn 10689 ingru 10706 indpi 10798 eliooord 13305 fzrev3i 13491 fzne1 13504 elfzole1 13567 elfzolt2 13568 bcp1nk 14224 rere 15029 nn0abscl 15219 climcl 15406 rlimcl 15410 rlimdm 15458 o1res 15467 rlimdmo1 15525 climcau 15578 caucvgb 15587 fprodcnv 15890 cshws0 17013 restsspw 17335 mreiincl 17498 catidex 17580 catcocl 17591 catass 17592 homa1 17944 homahom2 17945 odulat 18341 dlatjmdi 18432 psrel 18475 psref2 18476 pstr2 18477 reldir 18505 dirdm 18506 dirref 18507 dirtr 18508 dirge 18509 chnub 18528 mgmcl 18551 submgmss 18613 submgmcl 18615 submgmmgm 18616 submss 18717 subm0cl 18719 submcl 18720 submmnd 18721 efmndbasf 18783 subgsubm 19061 symgbasf1o 19288 symginv 19315 psgneu 19419 odmulg 19469 frgpnabl 19788 dprdgrp 19920 dprdf 19921 abvfge0 20730 abveq0 20734 abvmul 20737 abvtri 20738 orngsqr 20782 lbsss 21012 lbssp 21014 lbsind 21015 domnchr 21470 cssi 21622 linds1 21748 linds2 21749 lindsind 21755 opsrtoslem2 21992 opsrso 21994 mdetunilem9 22536 uniopn 22813 iunopn 22814 inopn 22815 fiinopn 22817 eltpsg 22859 basis1 22866 basis2 22867 eltg4i 22876 lmff 23217 t1sep2 23285 cmpfii 23325 ptfinfin 23435 kqhmph 23735 fbasne0 23746 0nelfb 23747 fbsspw 23748 fbasssin 23752 ufli 23830 uffixfr 23839 elfm 23863 fclsopni 23931 fclselbas 23932 ustssxp 24121 ustbasel 24123 ustincl 24124 ustdiag 24125 ustinvel 24126 ustexhalf 24127 ustfilxp 24129 ustbas2 24141 ustbas 24143 psmetf 24222 psmet0 24224 psmettri2 24225 metflem 24244 xmetf 24245 xmeteq0 24254 xmettri2 24256 tmsxms 24402 tmsms 24403 metustsym 24471 tngnrg 24590 cncff 24814 cncfi 24815 cfili 25196 iscmet3lem2 25220 mbfres 25573 mbfimaopnlem 25584 limcresi 25814 dvcnp2 25849 dvcnp2OLD 25850 ulmcl 26318 ulmf 26319 ulmcau 26332 pserulm 26359 pserdvlem2 26366 sinq34lt0t 26446 logtayl 26597 dchrmhm 27180 lgsdir2lem2 27265 2sqlem9 27366 mulog2sum 27476 newbdayim 27849 eleei 28876 uhgrf 29041 ushgrf 29042 upgrf 29065 umgrf 29077 uspgrf 29133 usgrf 29134 usgrfs 29136 nbcplgr 29413 clwlkcompim 29759 tncp 30456 eulplig 30463 grpofo 30477 grpolidinv 30479 grpoass 30481 nvvop 30587 phpar 30802 pjch1 31648 toslub 32952 tosglb 32954 exsslsb 33607 fldextsubrg 33660 fldextress 33662 zhmnrg 33976 issgon 34134 measfrge0 34214 measvnul 34217 measvun 34220 fzssfzo 34550 bnj916 34943 bnj983 34961 cplgredgex 35163 acycgrcycl 35189 mfsdisj 35592 mtyf2 35593 maxsta 35596 mvtinf 35597 r1peuqusdeg1 35685 hfun 36218 hfsn 36219 hfelhf 36221 hfuni 36224 hfpw 36225 fneuni 36387 curryset 36986 mptsnunlem 37378 heibor1lem 37855 heiborlem1 37857 heiborlem3 37859 opidonOLD 37898 isexid2 37901 elrelsrelim 38531 eqvrelqsel 38659 elpcliN 39938 lnrfg 43158 sdomne0 43452 sdomne0d 43453 pwinfi2 43601 frege55lem1c 43955 gneispacef 44174 gneispacef2 44175 gneispacern2 44178 gneispace0nelrn 44179 gneispaceel 44182 gneispacess 44184 mnuop123d 44301 trintALTVD 44918 trintALT 44919 eliuniin 45142 eliuniin2 45163 disjrnmpt2 45231 stoweidlem35 46079 saluncl 46361 saldifcl 46363 0sal 46364 sge0resplit 46450 omedm 46543 funressneu 47084 afvelrnb0 47201 afvelima 47204 rlimdmafv 47214 funressndmafv2rn 47260 rlimdmafv2 47295 elsetpreimafv 47422 oexpnegALTV 47714 gricbri 47953 grlimprop2 48023 grilcbri 48046 asslawass 48230 linindsi 48485 inisegn0a 48873 eloprab1st2nd 48905 uobrcl 49231 uobeq2 49439 isinito2 49537 basrestermcfolem 49609 discsnterm 49612 islmd 49703 |
| Copyright terms: Public domain | W3C validator |