| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ibi | Structured version Visualization version GIF version | ||
| Description: Inference that converts a biconditional implied by one of its arguments, into an implication. (Contributed by NM, 17-Oct-2003.) |
| Ref | Expression |
|---|---|
| ibi.1 | ⊢ (𝜑 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ibi | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
| 2 | ibi.1 | . 2 ⊢ (𝜑 → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | mpbid 232 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: ibir 268 elab3gf 3642 elab3g 3643 elimhyp 4544 elimhyp2v 4545 elimhyp3v 4546 elimhyp4v 4547 elpwi 4560 elsni 4596 elpri 4603 eltpi 4642 snssi 4762 prssi 4775 snelpwi 5390 prelpwi 5394 elxpi 5645 releldmb 5892 relelrnb 5893 elrnmpt2d 5912 eloni 6321 limuni2 6374 funeu 6511 fneu 6596 fvelima2 6879 fvelima 6892 fvelimad 6894 eloprabi 8005 fo2ndf 8061 orderseqlem 8097 tfrlem9 8314 oeeulem 8526 elqsi 8700 qsel 8730 ecopovsym 8753 elpmi 8780 elmapi 8783 pmsspw 8811 brdomi 8892 en0 8950 en0r 8952 en1 8956 mapdom1 9066 rexdif1en 9082 ominf 9163 ominfOLD 9164 unblem2 9198 unfilem1 9212 fodomfir 9237 fiin 9331 brwdomi 9479 canthwdom 9490 brwdom3i 9494 unxpwdom 9500 scott0 9801 acni 9958 djuinf 10102 pwdjudom 10128 fin1ai 10206 fin2i 10208 fin4i 10211 ssfin3ds 10243 fin23lem17 10251 fin23lem38 10262 fin23lem39 10263 isfin32i 10278 fin34 10303 isfin7-2 10309 fin1a2lem13 10325 fin12 10326 gchi 10537 wuntr 10618 wununi 10619 wunpw 10620 wunpr 10622 wun0 10631 tskpwss 10665 tskpw 10666 tsken 10667 grutr 10706 grupw 10708 grupr 10710 gruurn 10711 ingru 10728 indpi 10820 eliooord 13326 fzrev3i 13512 fzne1 13525 elfzole1 13588 elfzolt2 13589 bcp1nk 14242 rere 15047 nn0abscl 15237 climcl 15424 rlimcl 15428 rlimdm 15476 o1res 15485 rlimdmo1 15543 climcau 15596 caucvgb 15605 fprodcnv 15908 cshws0 17031 restsspw 17353 mreiincl 17516 catidex 17598 catcocl 17609 catass 17610 homa1 17962 homahom2 17963 odulat 18359 dlatjmdi 18450 psrel 18493 psref2 18494 pstr2 18495 reldir 18523 dirdm 18524 dirref 18525 dirtr 18526 dirge 18527 mgmcl 18535 submgmss 18597 submgmcl 18599 submgmmgm 18600 submss 18701 subm0cl 18703 submcl 18704 submmnd 18705 efmndbasf 18767 subgsubm 19045 symgbasf1o 19272 symginv 19299 psgneu 19403 odmulg 19453 frgpnabl 19772 dprdgrp 19904 dprdf 19905 abvfge0 20717 abveq0 20721 abvmul 20724 abvtri 20725 orngsqr 20769 lbsss 20999 lbssp 21001 lbsind 21002 domnchr 21457 cssi 21609 linds1 21735 linds2 21736 lindsind 21742 opsrtoslem2 21979 opsrso 21981 mdetunilem9 22523 uniopn 22800 iunopn 22801 inopn 22802 fiinopn 22804 eltpsg 22846 basis1 22853 basis2 22854 eltg4i 22863 lmff 23204 t1sep2 23272 cmpfii 23312 ptfinfin 23422 kqhmph 23722 fbasne0 23733 0nelfb 23734 fbsspw 23735 fbasssin 23739 ufli 23817 uffixfr 23826 elfm 23850 fclsopni 23918 fclselbas 23919 ustssxp 24108 ustbasel 24110 ustincl 24111 ustdiag 24112 ustinvel 24113 ustexhalf 24114 ustfilxp 24116 ustbas2 24129 ustbas 24131 psmetf 24210 psmet0 24212 psmettri2 24213 metflem 24232 xmetf 24233 xmeteq0 24242 xmettri2 24244 tmsxms 24390 tmsms 24391 metustsym 24459 tngnrg 24578 cncff 24802 cncfi 24803 cfili 25184 iscmet3lem2 25208 mbfres 25561 mbfimaopnlem 25572 limcresi 25802 dvcnp2 25837 dvcnp2OLD 25838 ulmcl 26306 ulmf 26307 ulmcau 26320 pserulm 26347 pserdvlem2 26354 sinq34lt0t 26434 logtayl 26585 dchrmhm 27168 lgsdir2lem2 27253 2sqlem9 27354 mulog2sum 27464 newbdayim 27835 eleei 28860 uhgrf 29025 ushgrf 29026 upgrf 29049 umgrf 29061 uspgrf 29117 usgrf 29118 usgrfs 29120 nbcplgr 29397 clwlkcompim 29743 tncp 30440 eulplig 30447 grpofo 30461 grpolidinv 30463 grpoass 30465 nvvop 30571 phpar 30786 pjch1 31632 toslub 32928 tosglb 32930 chnub 32967 exsslsb 33571 fldextsubrg 33624 fldextress 33626 zhmnrg 33934 issgon 34092 measfrge0 34172 measvnul 34175 measvun 34178 fzssfzo 34509 bnj916 34902 bnj983 34920 cplgredgex 35096 acycgrcycl 35122 mfsdisj 35525 mtyf2 35526 maxsta 35529 mvtinf 35530 r1peuqusdeg1 35618 hfun 36154 hfsn 36155 hfelhf 36157 hfuni 36160 hfpw 36161 fneuni 36323 curryset 36922 mptsnunlem 37314 heibor1lem 37791 heiborlem1 37793 heiborlem3 37795 opidonOLD 37834 isexid2 37837 elrelsrelim 38467 eqvrelqsel 38595 elpcliN 39875 lnrfg 43095 sdomne0 43389 sdomne0d 43390 pwinfi2 43538 frege55lem1c 43892 gneispacef 44111 gneispacef2 44112 gneispacern2 44115 gneispace0nelrn 44116 gneispaceel 44119 gneispacess 44121 mnuop123d 44238 trintALTVD 44856 trintALT 44857 eliuniin 45080 eliuniin2 45101 disjrnmpt2 45169 stoweidlem35 46020 saluncl 46302 saldifcl 46304 0sal 46305 sge0resplit 46391 omedm 46484 funressneu 47035 afvelrnb0 47152 afvelima 47155 rlimdmafv 47165 funressndmafv2rn 47211 rlimdmafv2 47246 elsetpreimafv 47373 oexpnegALTV 47665 gricbri 47904 grlimprop2 47974 grilcbri 47997 asslawass 48181 linindsi 48436 inisegn0a 48824 eloprab1st2nd 48856 uobrcl 49182 uobeq2 49390 isinito2 49488 basrestermcfolem 49560 discsnterm 49563 islmd 49654 |
| Copyright terms: Public domain | W3C validator |