Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-19.21t Structured version   Visualization version   GIF version

Theorem bj-19.21t 34951
Description: Statement 19.21t 2199 proved from modalK (obsoleting 19.21v 1942). (Contributed by BJ, 2-Dec-2023.)
Assertion
Ref Expression
bj-19.21t (Ⅎ'𝑥𝜑 → (∀𝑥(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝜓)))

Proof of Theorem bj-19.21t
StepHypRef Expression
1 bj-nnf-alrim 34937 . 2 (Ⅎ'𝑥𝜑 → (∀𝑥(𝜑𝜓) → (𝜑 → ∀𝑥𝜓)))
2 bj-nnfe 34913 . . . 4 (Ⅎ'𝑥𝜑 → (∃𝑥𝜑𝜑))
32imim1d 82 . . 3 (Ⅎ'𝑥𝜑 → ((𝜑 → ∀𝑥𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓)))
4 19.38 1841 . . 3 ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑𝜓))
53, 4syl6 35 . 2 (Ⅎ'𝑥𝜑 → ((𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑𝜓)))
61, 5impbid 211 1 (Ⅎ'𝑥𝜑 → (∀𝑥(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wex 1782  Ⅎ'wnnf 34905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-bj-nnf 34906
This theorem is referenced by:  bj-pm11.53vw  34958
  Copyright terms: Public domain W3C validator