![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.40 | Structured version Visualization version GIF version |
Description: Theorem 19.40 of [Margaris] p. 90. (Contributed by NM, 26-May-1993.) |
Ref | Expression |
---|---|
19.40 | ⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exsimpl 1867 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → ∃𝑥𝜑) | |
2 | exsimpr 1868 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → ∃𝑥𝜓) | |
3 | 1, 2 | jca 511 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 |
This theorem is referenced by: 19.40-2 1886 19.40b 1887 19.41v 1949 19.41 2236 exdistrf 2455 uniin 4955 copsexgw 5510 copsexg 5511 dmin 5936 imadif 6662 oprabidw 7479 lfuhgr3 35087 bj-19.41al 36625 bj-nnfan 36714 bj-nnfand 36715 bj-19.42t 36739 |
Copyright terms: Public domain | W3C validator |