| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.40 | Structured version Visualization version GIF version | ||
| Description: Theorem 19.40 of [Margaris] p. 90. (Contributed by NM, 26-May-1993.) |
| Ref | Expression |
|---|---|
| 19.40 | ⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exsimpl 1868 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → ∃𝑥𝜑) | |
| 2 | exsimpr 1869 | . 2 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → ∃𝑥𝜓) | |
| 3 | 1, 2 | jca 511 | 1 ⊢ (∃𝑥(𝜑 ∧ 𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: 19.40-2 1887 19.40b 1888 19.41v 1949 19.41 2235 exdistrf 2452 uniin 4931 copsexgw 5495 copsexg 5496 dmin 5922 imadif 6650 oprabidw 7462 lfuhgr3 35125 bj-19.41al 36660 bj-nnfan 36749 bj-nnfand 36750 bj-19.42t 36774 |
| Copyright terms: Public domain | W3C validator |