MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.40 Structured version   Visualization version   GIF version

Theorem 19.40 1885
Description: Theorem 19.40 of [Margaris] p. 90. (Contributed by NM, 26-May-1993.)
Assertion
Ref Expression
19.40 (∃𝑥(𝜑𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓))

Proof of Theorem 19.40
StepHypRef Expression
1 exsimpl 1867 . 2 (∃𝑥(𝜑𝜓) → ∃𝑥𝜑)
2 exsimpr 1868 . 2 (∃𝑥(𝜑𝜓) → ∃𝑥𝜓)
31, 2jca 511 1 (∃𝑥(𝜑𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778
This theorem is referenced by:  19.40-2  1886  19.40b  1887  19.41v  1949  19.41  2236  exdistrf  2455  uniin  4955  copsexgw  5510  copsexg  5511  dmin  5936  imadif  6662  oprabidw  7479  lfuhgr3  35087  bj-19.41al  36625  bj-nnfan  36714  bj-nnfand  36715  bj-19.42t  36739
  Copyright terms: Public domain W3C validator