MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.40 Structured version   Visualization version   GIF version

Theorem 19.40 1887
Description: Theorem 19.40 of [Margaris] p. 90. (Contributed by NM, 26-May-1993.)
Assertion
Ref Expression
19.40 (∃𝑥(𝜑𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓))

Proof of Theorem 19.40
StepHypRef Expression
1 exsimpl 1869 . 2 (∃𝑥(𝜑𝜓) → ∃𝑥𝜑)
2 exsimpr 1870 . 2 (∃𝑥(𝜑𝜓) → ∃𝑥𝜓)
31, 2jca 511 1 (∃𝑥(𝜑𝜓) → (∃𝑥𝜑 ∧ ∃𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781
This theorem is referenced by:  19.40-2  1888  19.40b  1889  19.41v  1950  19.41  2238  exdistrf  2447  uniin  4880  copsexgw  5428  copsexg  5429  dmin  5850  imadif  6565  oprabidw  7377  lfuhgr3  35164  bj-19.41al  36703  bj-nnfan  36792  bj-nnfand  36793  bj-19.42t  36817
  Copyright terms: Public domain W3C validator