Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ablgrp | Structured version Visualization version GIF version |
Description: An Abelian group is a group. (Contributed by NM, 26-Aug-2011.) |
Ref | Expression |
---|---|
ablgrp | ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isabl 19399 | . 2 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) | |
2 | 1 | simplbi 498 | 1 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2107 Grpcgrp 18586 CMndccmn 19395 Abelcabl 19396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3435 df-in 3895 df-abl 19398 |
This theorem is referenced by: ablgrpd 19401 ablinvadd 19420 ablsub2inv 19421 ablsubadd 19422 ablsub4 19423 abladdsub4 19424 abladdsub 19425 ablpncan2 19426 ablpncan3 19427 ablsubsub 19428 ablsubsub4 19429 ablpnpcan 19430 ablnncan 19431 ablnnncan 19433 ablnnncan1 19434 ablsubsub23 19435 mulgdi 19437 mulgghm 19439 mulgsubdi 19440 ghmabl 19443 invghm 19444 eqgabl 19445 odadd1 19458 odadd2 19459 odadd 19460 gexexlem 19462 gexex 19463 torsubg 19464 oddvdssubg 19465 prdsabld 19472 cnaddinv 19481 cyggexb 19509 gsumsub 19558 telgsumfzslem 19598 telgsumfzs 19599 telgsums 19603 ablfacrp 19678 ablfac1lem 19680 ablfac1b 19682 ablfac1c 19683 ablfac1eulem 19684 ablfac1eu 19685 pgpfac1lem1 19686 pgpfac1lem2 19687 pgpfac1lem3a 19688 pgpfac1lem3 19689 pgpfac1lem4 19690 pgpfac1lem5 19691 pgpfac1 19692 pgpfaclem3 19695 pgpfac 19696 ablfaclem2 19698 ablfaclem3 19699 ablfac 19700 cnmsubglem 20670 zlmlmod 20737 frgpcyg 20790 efsubm 25716 dchrghm 26413 dchr1 26414 dchrinv 26418 dchr1re 26420 dchrpt 26424 dchrsum2 26425 sumdchr2 26427 dchrhash 26428 dchr2sum 26430 rpvmasumlem 26644 rpvmasum2 26669 dchrisum0re 26670 fedgmullem2 31720 dvalveclem 39046 isnumbasgrplem1 40933 isnumbasabl 40938 isnumbasgrp 40939 dfacbasgrp 40940 isringrng 45450 rnglz 45453 isrnghm 45461 isrnghmd 45471 idrnghm 45477 c0rnghm 45482 zrrnghm 45486 |
Copyright terms: Public domain | W3C validator |