| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ablgrp | Structured version Visualization version GIF version | ||
| Description: An Abelian group is a group. (Contributed by NM, 26-Aug-2011.) |
| Ref | Expression |
|---|---|
| ablgrp | ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isabl 19714 | . 2 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Grpcgrp 18865 CMndccmn 19710 Abelcabl 19711 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-in 3921 df-abl 19713 |
| This theorem is referenced by: ablgrpd 19716 ablinvadd 19737 ablsub2inv 19738 ablsubadd 19739 ablsub4 19740 abladdsub4 19741 abladdsub 19742 ablsubadd23 19743 ablsubaddsub 19744 ablpncan2 19745 ablpncan3 19746 ablsubsub 19747 ablsubsub4 19748 ablpnpcan 19749 ablnncan 19750 ablnnncan 19752 ablnnncan1 19753 ablsubsub23 19754 mulgdi 19756 mulgghm 19758 mulgsubdi 19759 ghmabl 19762 invghm 19763 eqgabl 19764 odadd1 19778 odadd2 19779 odadd 19780 gexexlem 19782 gexex 19783 torsubg 19784 oddvdssubg 19785 prdsabld 19792 cnaddinv 19801 cyggexb 19829 gsumsub 19878 telgsumfzslem 19918 telgsumfzs 19919 telgsums 19923 ablfacrp 19998 ablfac1lem 20000 ablfac1b 20002 ablfac1c 20003 ablfac1eulem 20004 ablfac1eu 20005 pgpfac1lem1 20006 pgpfac1lem2 20007 pgpfac1lem3a 20008 pgpfac1lem3 20009 pgpfac1lem4 20010 pgpfac1lem5 20011 pgpfac1 20012 pgpfaclem3 20015 pgpfac 20016 ablfaclem2 20018 ablfaclem3 20019 ablfac 20020 rnglz 20074 rngpropd 20083 isringrng 20196 isrnghm 20350 isrnghmd 20360 idrnghm 20367 c0rnghm 20444 zrrnghm 20445 cnmsubglem 21347 zlmlmod 21432 frgpcyg 21483 efsubm 26460 dchrghm 27167 dchr1 27168 dchrinv 27172 dchr1re 27174 dchrpt 27178 dchrsum2 27179 sumdchr2 27181 dchrhash 27182 dchr2sum 27184 rpvmasumlem 27398 rpvmasum2 27423 dchrisum0re 27424 fedgmullem2 33626 dvalveclem 41019 primrootscoprbij 42090 primrootspoweq0 42094 isnumbasgrplem1 43090 isnumbasabl 43095 isnumbasgrp 43096 dfacbasgrp 43097 |
| Copyright terms: Public domain | W3C validator |