| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ablgrp | Structured version Visualization version GIF version | ||
| Description: An Abelian group is a group. (Contributed by NM, 26-Aug-2011.) |
| Ref | Expression |
|---|---|
| ablgrp | ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isabl 19721 | . 2 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Grpcgrp 18872 CMndccmn 19717 Abelcabl 19718 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-in 3924 df-abl 19720 |
| This theorem is referenced by: ablgrpd 19723 ablinvadd 19744 ablsub2inv 19745 ablsubadd 19746 ablsub4 19747 abladdsub4 19748 abladdsub 19749 ablsubadd23 19750 ablsubaddsub 19751 ablpncan2 19752 ablpncan3 19753 ablsubsub 19754 ablsubsub4 19755 ablpnpcan 19756 ablnncan 19757 ablnnncan 19759 ablnnncan1 19760 ablsubsub23 19761 mulgdi 19763 mulgghm 19765 mulgsubdi 19766 ghmabl 19769 invghm 19770 eqgabl 19771 odadd1 19785 odadd2 19786 odadd 19787 gexexlem 19789 gexex 19790 torsubg 19791 oddvdssubg 19792 prdsabld 19799 cnaddinv 19808 cyggexb 19836 gsumsub 19885 telgsumfzslem 19925 telgsumfzs 19926 telgsums 19930 ablfacrp 20005 ablfac1lem 20007 ablfac1b 20009 ablfac1c 20010 ablfac1eulem 20011 ablfac1eu 20012 pgpfac1lem1 20013 pgpfac1lem2 20014 pgpfac1lem3a 20015 pgpfac1lem3 20016 pgpfac1lem4 20017 pgpfac1lem5 20018 pgpfac1 20019 pgpfaclem3 20022 pgpfac 20023 ablfaclem2 20025 ablfaclem3 20026 ablfac 20027 rnglz 20081 rngpropd 20090 isringrng 20203 isrnghm 20357 isrnghmd 20367 idrnghm 20374 c0rnghm 20451 zrrnghm 20452 cnmsubglem 21354 zlmlmod 21439 frgpcyg 21490 efsubm 26467 dchrghm 27174 dchr1 27175 dchrinv 27179 dchr1re 27181 dchrpt 27185 dchrsum2 27186 sumdchr2 27188 dchrhash 27189 dchr2sum 27191 rpvmasumlem 27405 rpvmasum2 27430 dchrisum0re 27431 fedgmullem2 33633 dvalveclem 41026 primrootscoprbij 42097 primrootspoweq0 42101 isnumbasgrplem1 43097 isnumbasabl 43102 isnumbasgrp 43103 dfacbasgrp 43104 |
| Copyright terms: Public domain | W3C validator |