| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ablgrp | Structured version Visualization version GIF version | ||
| Description: An Abelian group is a group. (Contributed by NM, 26-Aug-2011.) |
| Ref | Expression |
|---|---|
| ablgrp | ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isabl 19706 | . 2 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 Grpcgrp 18856 CMndccmn 19702 Abelcabl 19703 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3440 df-in 3906 df-abl 19705 |
| This theorem is referenced by: ablgrpd 19708 ablinvadd 19729 ablsub2inv 19730 ablsubadd 19731 ablsub4 19732 abladdsub4 19733 abladdsub 19734 ablsubadd23 19735 ablsubaddsub 19736 ablpncan2 19737 ablpncan3 19738 ablsubsub 19739 ablsubsub4 19740 ablpnpcan 19741 ablnncan 19742 ablnnncan 19744 ablnnncan1 19745 ablsubsub23 19746 mulgdi 19748 mulgghm 19750 mulgsubdi 19751 ghmabl 19754 invghm 19755 eqgabl 19756 odadd1 19770 odadd2 19771 odadd 19772 gexexlem 19774 gexex 19775 torsubg 19776 oddvdssubg 19777 prdsabld 19784 cnaddinv 19793 cyggexb 19821 gsumsub 19870 telgsumfzslem 19910 telgsumfzs 19911 telgsums 19915 ablfacrp 19990 ablfac1lem 19992 ablfac1b 19994 ablfac1c 19995 ablfac1eulem 19996 ablfac1eu 19997 pgpfac1lem1 19998 pgpfac1lem2 19999 pgpfac1lem3a 20000 pgpfac1lem3 20001 pgpfac1lem4 20002 pgpfac1lem5 20003 pgpfac1 20004 pgpfaclem3 20007 pgpfac 20008 ablfaclem2 20010 ablfaclem3 20011 ablfac 20012 rnglz 20093 rngpropd 20102 isringrng 20215 isrnghm 20369 isrnghmd 20379 idrnghm 20386 c0rnghm 20460 zrrnghm 20461 cnmsubglem 21377 zlmlmod 21469 frgpcyg 21520 efsubm 26497 dchrghm 27204 dchr1 27205 dchrinv 27209 dchr1re 27211 dchrpt 27215 dchrsum2 27216 sumdchr2 27218 dchrhash 27219 dchr2sum 27221 rpvmasumlem 27435 rpvmasum2 27460 dchrisum0re 27461 fedgmullem2 33654 dvalveclem 41134 primrootscoprbij 42205 primrootspoweq0 42209 isnumbasgrplem1 43208 isnumbasabl 43213 isnumbasgrp 43214 dfacbasgrp 43215 |
| Copyright terms: Public domain | W3C validator |