Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ablgrp | Structured version Visualization version GIF version |
Description: An Abelian group is a group. (Contributed by NM, 26-Aug-2011.) |
Ref | Expression |
---|---|
ablgrp | ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isabl 19458 | . 2 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) | |
2 | 1 | simplbi 498 | 1 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 Grpcgrp 18646 CMndccmn 19454 Abelcabl 19455 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-v 3443 df-in 3904 df-abl 19457 |
This theorem is referenced by: ablgrpd 19460 ablinvadd 19479 ablsub2inv 19480 ablsubadd 19481 ablsub4 19482 abladdsub4 19483 abladdsub 19484 ablpncan2 19485 ablpncan3 19486 ablsubsub 19487 ablsubsub4 19488 ablpnpcan 19489 ablnncan 19490 ablnnncan 19492 ablnnncan1 19493 ablsubsub23 19494 mulgdi 19496 mulgghm 19498 mulgsubdi 19499 ghmabl 19502 invghm 19503 eqgabl 19504 odadd1 19517 odadd2 19518 odadd 19519 gexexlem 19521 gexex 19522 torsubg 19523 oddvdssubg 19524 prdsabld 19531 cnaddinv 19540 cyggexb 19568 gsumsub 19617 telgsumfzslem 19657 telgsumfzs 19658 telgsums 19662 ablfacrp 19737 ablfac1lem 19739 ablfac1b 19741 ablfac1c 19742 ablfac1eulem 19743 ablfac1eu 19744 pgpfac1lem1 19745 pgpfac1lem2 19746 pgpfac1lem3a 19747 pgpfac1lem3 19748 pgpfac1lem4 19749 pgpfac1lem5 19750 pgpfac1 19751 pgpfaclem3 19754 pgpfac 19755 ablfaclem2 19757 ablfaclem3 19758 ablfac 19759 cnmsubglem 20733 zlmlmod 20800 frgpcyg 20853 efsubm 25779 dchrghm 26476 dchr1 26477 dchrinv 26481 dchr1re 26483 dchrpt 26487 dchrsum2 26488 sumdchr2 26490 dchrhash 26491 dchr2sum 26493 rpvmasumlem 26707 rpvmasum2 26732 dchrisum0re 26733 fedgmullem2 31817 dvalveclem 39244 isnumbasgrplem1 41130 isnumbasabl 41135 isnumbasgrp 41136 dfacbasgrp 41137 isringrng 45691 rnglz 45694 isrnghm 45702 isrnghmd 45712 idrnghm 45718 c0rnghm 45723 zrrnghm 45727 |
Copyright terms: Public domain | W3C validator |