| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ablgrp | Structured version Visualization version GIF version | ||
| Description: An Abelian group is a group. (Contributed by NM, 26-Aug-2011.) |
| Ref | Expression |
|---|---|
| ablgrp | ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isabl 19765 | . 2 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Grpcgrp 18916 CMndccmn 19761 Abelcabl 19762 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-in 3933 df-abl 19764 |
| This theorem is referenced by: ablgrpd 19767 ablinvadd 19788 ablsub2inv 19789 ablsubadd 19790 ablsub4 19791 abladdsub4 19792 abladdsub 19793 ablsubadd23 19794 ablsubaddsub 19795 ablpncan2 19796 ablpncan3 19797 ablsubsub 19798 ablsubsub4 19799 ablpnpcan 19800 ablnncan 19801 ablnnncan 19803 ablnnncan1 19804 ablsubsub23 19805 mulgdi 19807 mulgghm 19809 mulgsubdi 19810 ghmabl 19813 invghm 19814 eqgabl 19815 odadd1 19829 odadd2 19830 odadd 19831 gexexlem 19833 gexex 19834 torsubg 19835 oddvdssubg 19836 prdsabld 19843 cnaddinv 19852 cyggexb 19880 gsumsub 19929 telgsumfzslem 19969 telgsumfzs 19970 telgsums 19974 ablfacrp 20049 ablfac1lem 20051 ablfac1b 20053 ablfac1c 20054 ablfac1eulem 20055 ablfac1eu 20056 pgpfac1lem1 20057 pgpfac1lem2 20058 pgpfac1lem3a 20059 pgpfac1lem3 20060 pgpfac1lem4 20061 pgpfac1lem5 20062 pgpfac1 20063 pgpfaclem3 20066 pgpfac 20067 ablfaclem2 20069 ablfaclem3 20070 ablfac 20071 rnglz 20125 rngpropd 20134 isringrng 20247 isrnghm 20401 isrnghmd 20411 idrnghm 20418 c0rnghm 20495 zrrnghm 20496 cnmsubglem 21398 zlmlmod 21483 frgpcyg 21534 efsubm 26512 dchrghm 27219 dchr1 27220 dchrinv 27224 dchr1re 27226 dchrpt 27230 dchrsum2 27231 sumdchr2 27233 dchrhash 27234 dchr2sum 27236 rpvmasumlem 27450 rpvmasum2 27475 dchrisum0re 27476 fedgmullem2 33670 dvalveclem 41044 primrootscoprbij 42115 primrootspoweq0 42119 isnumbasgrplem1 43125 isnumbasabl 43130 isnumbasgrp 43131 dfacbasgrp 43132 |
| Copyright terms: Public domain | W3C validator |