![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ablgrp | Structured version Visualization version GIF version |
Description: An Abelian group is a group. (Contributed by NM, 26-Aug-2011.) |
Ref | Expression |
---|---|
ablgrp | ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isabl 19816 | . 2 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 Grpcgrp 18963 CMndccmn 19812 Abelcabl 19813 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 df-in 3969 df-abl 19815 |
This theorem is referenced by: ablgrpd 19818 ablinvadd 19839 ablsub2inv 19840 ablsubadd 19841 ablsub4 19842 abladdsub4 19843 abladdsub 19844 ablsubadd23 19845 ablsubaddsub 19846 ablpncan2 19847 ablpncan3 19848 ablsubsub 19849 ablsubsub4 19850 ablpnpcan 19851 ablnncan 19852 ablnnncan 19854 ablnnncan1 19855 ablsubsub23 19856 mulgdi 19858 mulgghm 19860 mulgsubdi 19861 ghmabl 19864 invghm 19865 eqgabl 19866 odadd1 19880 odadd2 19881 odadd 19882 gexexlem 19884 gexex 19885 torsubg 19886 oddvdssubg 19887 prdsabld 19894 cnaddinv 19903 cyggexb 19931 gsumsub 19980 telgsumfzslem 20020 telgsumfzs 20021 telgsums 20025 ablfacrp 20100 ablfac1lem 20102 ablfac1b 20104 ablfac1c 20105 ablfac1eulem 20106 ablfac1eu 20107 pgpfac1lem1 20108 pgpfac1lem2 20109 pgpfac1lem3a 20110 pgpfac1lem3 20111 pgpfac1lem4 20112 pgpfac1lem5 20113 pgpfac1 20114 pgpfaclem3 20117 pgpfac 20118 ablfaclem2 20120 ablfaclem3 20121 ablfac 20122 rnglz 20182 rngpropd 20191 isringrng 20300 isrnghm 20457 isrnghmd 20467 idrnghm 20474 c0rnghm 20551 zrrnghm 20552 cnmsubglem 21465 zlmlmod 21554 frgpcyg 21609 efsubm 26607 dchrghm 27314 dchr1 27315 dchrinv 27319 dchr1re 27321 dchrpt 27325 dchrsum2 27326 sumdchr2 27328 dchrhash 27329 dchr2sum 27331 rpvmasumlem 27545 rpvmasum2 27570 dchrisum0re 27571 fedgmullem2 33657 dvalveclem 41007 primrootscoprbij 42083 primrootspoweq0 42087 isnumbasgrplem1 43089 isnumbasabl 43094 isnumbasgrp 43095 dfacbasgrp 43096 |
Copyright terms: Public domain | W3C validator |