| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ablgrp | Structured version Visualization version GIF version | ||
| Description: An Abelian group is a group. (Contributed by NM, 26-Aug-2011.) |
| Ref | Expression |
|---|---|
| ablgrp | ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isabl 19689 | . 2 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2110 Grpcgrp 18838 CMndccmn 19685 Abelcabl 19686 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3436 df-in 3907 df-abl 19688 |
| This theorem is referenced by: ablgrpd 19691 ablinvadd 19712 ablsub2inv 19713 ablsubadd 19714 ablsub4 19715 abladdsub4 19716 abladdsub 19717 ablsubadd23 19718 ablsubaddsub 19719 ablpncan2 19720 ablpncan3 19721 ablsubsub 19722 ablsubsub4 19723 ablpnpcan 19724 ablnncan 19725 ablnnncan 19727 ablnnncan1 19728 ablsubsub23 19729 mulgdi 19731 mulgghm 19733 mulgsubdi 19734 ghmabl 19737 invghm 19738 eqgabl 19739 odadd1 19753 odadd2 19754 odadd 19755 gexexlem 19757 gexex 19758 torsubg 19759 oddvdssubg 19760 prdsabld 19767 cnaddinv 19776 cyggexb 19804 gsumsub 19853 telgsumfzslem 19893 telgsumfzs 19894 telgsums 19898 ablfacrp 19973 ablfac1lem 19975 ablfac1b 19977 ablfac1c 19978 ablfac1eulem 19979 ablfac1eu 19980 pgpfac1lem1 19981 pgpfac1lem2 19982 pgpfac1lem3a 19983 pgpfac1lem3 19984 pgpfac1lem4 19985 pgpfac1lem5 19986 pgpfac1 19987 pgpfaclem3 19990 pgpfac 19991 ablfaclem2 19993 ablfaclem3 19994 ablfac 19995 rnglz 20076 rngpropd 20085 isringrng 20198 isrnghm 20352 isrnghmd 20362 idrnghm 20369 c0rnghm 20443 zrrnghm 20444 cnmsubglem 21360 zlmlmod 21452 frgpcyg 21503 efsubm 26480 dchrghm 27187 dchr1 27188 dchrinv 27192 dchr1re 27194 dchrpt 27198 dchrsum2 27199 sumdchr2 27201 dchrhash 27202 dchr2sum 27204 rpvmasumlem 27418 rpvmasum2 27443 dchrisum0re 27444 fedgmullem2 33633 dvalveclem 41043 primrootscoprbij 42114 primrootspoweq0 42118 isnumbasgrplem1 43113 isnumbasabl 43118 isnumbasgrp 43119 dfacbasgrp 43120 |
| Copyright terms: Public domain | W3C validator |