Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ablgrp | Structured version Visualization version GIF version |
Description: An Abelian group is a group. (Contributed by NM, 26-Aug-2011.) |
Ref | Expression |
---|---|
ablgrp | ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isabl 19305 | . 2 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Grpcgrp 18492 CMndccmn 19301 Abelcabl 19302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-abl 19304 |
This theorem is referenced by: ablgrpd 19307 ablinvadd 19326 ablsub2inv 19327 ablsubadd 19328 ablsub4 19329 abladdsub4 19330 abladdsub 19331 ablpncan2 19332 ablpncan3 19333 ablsubsub 19334 ablsubsub4 19335 ablpnpcan 19336 ablnncan 19337 ablnnncan 19339 ablnnncan1 19340 ablsubsub23 19341 mulgdi 19343 mulgghm 19345 mulgsubdi 19346 ghmabl 19349 invghm 19350 eqgabl 19351 odadd1 19364 odadd2 19365 odadd 19366 gexexlem 19368 gexex 19369 torsubg 19370 oddvdssubg 19371 prdsabld 19378 cnaddinv 19387 cyggexb 19415 gsumsub 19464 telgsumfzslem 19504 telgsumfzs 19505 telgsums 19509 ablfacrp 19584 ablfac1lem 19586 ablfac1b 19588 ablfac1c 19589 ablfac1eulem 19590 ablfac1eu 19591 pgpfac1lem1 19592 pgpfac1lem2 19593 pgpfac1lem3a 19594 pgpfac1lem3 19595 pgpfac1lem4 19596 pgpfac1lem5 19597 pgpfac1 19598 pgpfaclem3 19601 pgpfac 19602 ablfaclem2 19604 ablfaclem3 19605 ablfac 19606 cnmsubglem 20573 zlmlmod 20640 frgpcyg 20693 efsubm 25612 dchrghm 26309 dchr1 26310 dchrinv 26314 dchr1re 26316 dchrpt 26320 dchrsum2 26321 sumdchr2 26323 dchrhash 26324 dchr2sum 26326 rpvmasumlem 26540 rpvmasum2 26565 dchrisum0re 26566 fedgmullem2 31613 dvalveclem 38966 isnumbasgrplem1 40842 isnumbasabl 40847 isnumbasgrp 40848 dfacbasgrp 40849 isringrng 45327 rnglz 45330 isrnghm 45338 isrnghmd 45348 idrnghm 45354 c0rnghm 45359 zrrnghm 45363 |
Copyright terms: Public domain | W3C validator |