| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ablgrp | Structured version Visualization version GIF version | ||
| Description: An Abelian group is a group. (Contributed by NM, 26-Aug-2011.) |
| Ref | Expression |
|---|---|
| ablgrp | ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isabl 19681 | . 2 ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Grpcgrp 18830 CMndccmn 19677 Abelcabl 19678 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-in 3912 df-abl 19680 |
| This theorem is referenced by: ablgrpd 19683 ablinvadd 19704 ablsub2inv 19705 ablsubadd 19706 ablsub4 19707 abladdsub4 19708 abladdsub 19709 ablsubadd23 19710 ablsubaddsub 19711 ablpncan2 19712 ablpncan3 19713 ablsubsub 19714 ablsubsub4 19715 ablpnpcan 19716 ablnncan 19717 ablnnncan 19719 ablnnncan1 19720 ablsubsub23 19721 mulgdi 19723 mulgghm 19725 mulgsubdi 19726 ghmabl 19729 invghm 19730 eqgabl 19731 odadd1 19745 odadd2 19746 odadd 19747 gexexlem 19749 gexex 19750 torsubg 19751 oddvdssubg 19752 prdsabld 19759 cnaddinv 19768 cyggexb 19796 gsumsub 19845 telgsumfzslem 19885 telgsumfzs 19886 telgsums 19890 ablfacrp 19965 ablfac1lem 19967 ablfac1b 19969 ablfac1c 19970 ablfac1eulem 19971 ablfac1eu 19972 pgpfac1lem1 19973 pgpfac1lem2 19974 pgpfac1lem3a 19975 pgpfac1lem3 19976 pgpfac1lem4 19977 pgpfac1lem5 19978 pgpfac1 19979 pgpfaclem3 19982 pgpfac 19983 ablfaclem2 19985 ablfaclem3 19986 ablfac 19987 rnglz 20068 rngpropd 20077 isringrng 20190 isrnghm 20344 isrnghmd 20354 idrnghm 20361 c0rnghm 20438 zrrnghm 20439 cnmsubglem 21355 zlmlmod 21447 frgpcyg 21498 efsubm 26476 dchrghm 27183 dchr1 27184 dchrinv 27188 dchr1re 27190 dchrpt 27194 dchrsum2 27195 sumdchr2 27197 dchrhash 27198 dchr2sum 27200 rpvmasumlem 27414 rpvmasum2 27439 dchrisum0re 27440 fedgmullem2 33602 dvalveclem 41004 primrootscoprbij 42075 primrootspoweq0 42079 isnumbasgrplem1 43074 isnumbasabl 43079 isnumbasgrp 43080 dfacbasgrp 43081 |
| Copyright terms: Public domain | W3C validator |