Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-snex Structured version   Visualization version   GIF version

Theorem bj-snex 36383
Description: A singleton is a set. See also snex 5431, snexALT 5381. (Contributed by NM, 7-Aug-1994.) Prove it from ax-bj-sn 36381. (Revised by BJ, 12-Jan-2025.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-snex {𝐴} ∈ V

Proof of Theorem bj-snex
StepHypRef Expression
1 bj-snexg 36382 . 2 (𝐴 ∈ V → {𝐴} ∈ V)
2 snprc 4721 . . . 4 𝐴 ∈ V ↔ {𝐴} = ∅)
32biimpi 215 . . 3 𝐴 ∈ V → {𝐴} = ∅)
4 0ex 5307 . . 3 ∅ ∈ V
53, 4eqeltrdi 2840 . 2 𝐴 ∈ V → {𝐴} ∈ V)
61, 5pm2.61i 182 1 {𝐴} ∈ V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2105  Vcvv 3473  c0 4322  {csn 4628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-12 2170  ax-ext 2702  ax-nul 5306  ax-bj-sn 36381
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-v 3475  df-dif 3951  df-nul 4323  df-sn 4629
This theorem is referenced by:  bj-prex  36388
  Copyright terms: Public domain W3C validator