![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-snex | Structured version Visualization version GIF version |
Description: A singleton is a set. See also snex 5441, snexALT 5388. (Contributed by NM, 7-Aug-1994.) Prove it from ax-bj-sn 37015. (Revised by BJ, 12-Jan-2025.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-snex | ⊢ {𝐴} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-snexg 37016 | . 2 ⊢ (𝐴 ∈ V → {𝐴} ∈ V) | |
2 | snprc 4721 | . . . 4 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
3 | 2 | biimpi 216 | . . 3 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
4 | 0ex 5312 | . . 3 ⊢ ∅ ∈ V | |
5 | 3, 4 | eqeltrdi 2846 | . 2 ⊢ (¬ 𝐴 ∈ V → {𝐴} ∈ V) |
6 | 1, 5 | pm2.61i 182 | 1 ⊢ {𝐴} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1536 ∈ wcel 2105 Vcvv 3477 ∅c0 4338 {csn 4630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-12 2174 ax-ext 2705 ax-nul 5311 ax-bj-sn 37015 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 df-dif 3965 df-nul 4339 df-sn 4631 |
This theorem is referenced by: bj-prex 37022 |
Copyright terms: Public domain | W3C validator |