![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-snex | Structured version Visualization version GIF version |
Description: A singleton is a set. See also snex 5451, snexALT 5401. (Contributed by NM, 7-Aug-1994.) Prove it from ax-bj-sn 36999. (Revised by BJ, 12-Jan-2025.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-snex | ⊢ {𝐴} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-snexg 37000 | . 2 ⊢ (𝐴 ∈ V → {𝐴} ∈ V) | |
2 | snprc 4742 | . . . 4 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
3 | 2 | biimpi 216 | . . 3 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
4 | 0ex 5325 | . . 3 ⊢ ∅ ∈ V | |
5 | 3, 4 | eqeltrdi 2852 | . 2 ⊢ (¬ 𝐴 ∈ V → {𝐴} ∈ V) |
6 | 1, 5 | pm2.61i 182 | 1 ⊢ {𝐴} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 {csn 4648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2178 ax-ext 2711 ax-nul 5324 ax-bj-sn 36999 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-dif 3979 df-nul 4353 df-sn 4649 |
This theorem is referenced by: bj-prex 37006 |
Copyright terms: Public domain | W3C validator |