Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-snex Structured version   Visualization version   GIF version

Theorem bj-snex 37068
Description: A singleton is a set. See also snex 5374, snexALT 5321. (Contributed by NM, 7-Aug-1994.) Prove it from ax-bj-sn 37066. (Revised by BJ, 12-Jan-2025.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-snex {𝐴} ∈ V

Proof of Theorem bj-snex
StepHypRef Expression
1 bj-snexg 37067 . 2 (𝐴 ∈ V → {𝐴} ∈ V)
2 snprc 4670 . . . 4 𝐴 ∈ V ↔ {𝐴} = ∅)
32biimpi 216 . . 3 𝐴 ∈ V → {𝐴} = ∅)
4 0ex 5245 . . 3 ∅ ∈ V
53, 4eqeltrdi 2839 . 2 𝐴 ∈ V → {𝐴} ∈ V)
61, 5pm2.61i 182 1 {𝐴} ∈ V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2111  Vcvv 3436  c0 4283  {csn 4576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-12 2180  ax-ext 2703  ax-nul 5244  ax-bj-sn 37066
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-dif 3905  df-nul 4284  df-sn 4577
This theorem is referenced by:  bj-prex  37073
  Copyright terms: Public domain W3C validator