Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-cbv3tb Structured version   Visualization version   GIF version

Theorem bj-cbv3tb 36753
Description: Closed form of cbv3 2405. (Contributed by BJ, 2-May-2019.)
Assertion
Ref Expression
bj-cbv3tb (∀𝑥𝑦(𝑥 = 𝑦 → (𝜑𝜓)) → ((∀𝑦𝑥𝜓 ∧ ∀𝑥𝑦𝜑) → (∀𝑥𝜑 → ∀𝑦𝜓)))

Proof of Theorem bj-cbv3tb
StepHypRef Expression
1 19.9t 2205 . . . 4 (Ⅎ𝑥𝜓 → (∃𝑥𝜓𝜓))
21biimpd 229 . . 3 (Ⅎ𝑥𝜓 → (∃𝑥𝜓𝜓))
32alimi 1809 . 2 (∀𝑦𝑥𝜓 → ∀𝑦(∃𝑥𝜓𝜓))
4 nf5r 2195 . . 3 (Ⅎ𝑦𝜑 → (𝜑 → ∀𝑦𝜑))
54alimi 1809 . 2 (∀𝑥𝑦𝜑 → ∀𝑥(𝜑 → ∀𝑦𝜑))
6 bj-cbv3ta 36752 . 2 (∀𝑥𝑦(𝑥 = 𝑦 → (𝜑𝜓)) → ((∀𝑦(∃𝑥𝜓𝜓) ∧ ∀𝑥(𝜑 → ∀𝑦𝜑)) → (∀𝑥𝜑 → ∀𝑦𝜓)))
73, 5, 6syl2ani 606 1 (∀𝑥𝑦(𝑥 = 𝑦 → (𝜑𝜓)) → ((∀𝑦𝑥𝜓 ∧ ∀𝑥𝑦𝜑) → (∀𝑥𝜑 → ∀𝑦𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1535  wex 1777  wnf 1781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-11 2158  ax-12 2178  ax-13 2380
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-nf 1782
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator