Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-cbv3tb | Structured version Visualization version GIF version |
Description: Closed form of cbv3 2395. (Contributed by BJ, 2-May-2019.) |
Ref | Expression |
---|---|
bj-cbv3tb | ⊢ (∀𝑥∀𝑦(𝑥 = 𝑦 → (𝜑 → 𝜓)) → ((∀𝑦Ⅎ𝑥𝜓 ∧ ∀𝑥Ⅎ𝑦𝜑) → (∀𝑥𝜑 → ∀𝑦𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.9t 2195 | . . . 4 ⊢ (Ⅎ𝑥𝜓 → (∃𝑥𝜓 ↔ 𝜓)) | |
2 | 1 | biimpd 228 | . . 3 ⊢ (Ⅎ𝑥𝜓 → (∃𝑥𝜓 → 𝜓)) |
3 | 2 | alimi 1811 | . 2 ⊢ (∀𝑦Ⅎ𝑥𝜓 → ∀𝑦(∃𝑥𝜓 → 𝜓)) |
4 | nf5r 2185 | . . 3 ⊢ (Ⅎ𝑦𝜑 → (𝜑 → ∀𝑦𝜑)) | |
5 | 4 | alimi 1811 | . 2 ⊢ (∀𝑥Ⅎ𝑦𝜑 → ∀𝑥(𝜑 → ∀𝑦𝜑)) |
6 | bj-cbv3ta 35017 | . 2 ⊢ (∀𝑥∀𝑦(𝑥 = 𝑦 → (𝜑 → 𝜓)) → ((∀𝑦(∃𝑥𝜓 → 𝜓) ∧ ∀𝑥(𝜑 → ∀𝑦𝜑)) → (∀𝑥𝜑 → ∀𝑦𝜓))) | |
7 | 3, 5, 6 | syl2ani 608 | 1 ⊢ (∀𝑥∀𝑦(𝑥 = 𝑦 → (𝜑 → 𝜓)) → ((∀𝑦Ⅎ𝑥𝜓 ∧ ∀𝑥Ⅎ𝑦𝜑) → (∀𝑥𝜑 → ∀𝑦𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∀wal 1537 ∃wex 1779 Ⅎwnf 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-11 2152 ax-12 2169 ax-13 2370 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1780 df-nf 1784 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |