MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl2ani Structured version   Visualization version   GIF version

Theorem syl2ani 601
Description: A syllogism inference. (Contributed by NM, 3-Aug-1999.)
Hypotheses
Ref Expression
syl2ani.1 (𝜑𝜒)
syl2ani.2 (𝜂𝜃)
syl2ani.3 (𝜓 → ((𝜒𝜃) → 𝜏))
Assertion
Ref Expression
syl2ani (𝜓 → ((𝜑𝜂) → 𝜏))

Proof of Theorem syl2ani
StepHypRef Expression
1 syl2ani.1 . 2 (𝜑𝜒)
2 syl2ani.2 . . 3 (𝜂𝜃)
3 syl2ani.3 . . 3 (𝜓 → ((𝜒𝜃) → 𝜏))
42, 3sylan2i 600 . 2 (𝜓 → ((𝜒𝜂) → 𝜏))
51, 4sylani 598 1 (𝜓 → ((𝜑𝜂) → 𝜏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199  df-an 386
This theorem is referenced by:  2mo  2705  frxp  7522  mapen  8364  fin1a2lem9  9516  coprmproddvdslem  15707  psss  17526  mgmidmo  17571  aannenlem1  24421  funtransport  32643  cgrxfr  32667  btwnxfr  32668  bj-cbv3tb  33208
  Copyright terms: Public domain W3C validator