MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl2ani Structured version   Visualization version   GIF version

Theorem syl2ani 607
Description: A syllogism inference. (Contributed by NM, 3-Aug-1999.)
Hypotheses
Ref Expression
syl2ani.1 (𝜑𝜒)
syl2ani.2 (𝜂𝜃)
syl2ani.3 (𝜓 → ((𝜒𝜃) → 𝜏))
Assertion
Ref Expression
syl2ani (𝜓 → ((𝜑𝜂) → 𝜏))

Proof of Theorem syl2ani
StepHypRef Expression
1 syl2ani.1 . 2 (𝜑𝜒)
2 syl2ani.2 . . 3 (𝜂𝜃)
3 syl2ani.3 . . 3 (𝜓 → ((𝜒𝜃) → 𝜏))
42, 3sylan2i 606 . 2 (𝜓 → ((𝜒𝜂) → 𝜏))
51, 4sylani 604 1 (𝜓 → ((𝜑𝜂) → 𝜏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  2mo  2647  fvf1pr  7300  frxp  8125  poxp2  8142  mapen  9155  rex2dom  9254  fin1a2lem9  10422  coprmproddvdslem  16681  psss  18590  mgmidmo  18638  aannenlem1  26288  funtransport  36049  cgrxfr  36073  btwnxfr  36074  weiunpo  36483  bj-cbv3tb  36805
  Copyright terms: Public domain W3C validator