![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl2ani | Structured version Visualization version GIF version |
Description: A syllogism inference. (Contributed by NM, 3-Aug-1999.) |
Ref | Expression |
---|---|
syl2ani.1 | ⊢ (𝜑 → 𝜒) |
syl2ani.2 | ⊢ (𝜂 → 𝜃) |
syl2ani.3 | ⊢ (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏)) |
Ref | Expression |
---|---|
syl2ani | ⊢ (𝜓 → ((𝜑 ∧ 𝜂) → 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2ani.1 | . 2 ⊢ (𝜑 → 𝜒) | |
2 | syl2ani.2 | . . 3 ⊢ (𝜂 → 𝜃) | |
3 | syl2ani.3 | . . 3 ⊢ (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏)) | |
4 | 2, 3 | sylan2i 605 | . 2 ⊢ (𝜓 → ((𝜒 ∧ 𝜂) → 𝜏)) |
5 | 1, 4 | sylani 603 | 1 ⊢ (𝜓 → ((𝜑 ∧ 𝜂) → 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: 2mo 2651 fvf1pr 7343 frxp 8167 poxp2 8184 mapen 9207 rex2dom 9309 fin1a2lem9 10477 coprmproddvdslem 16709 psss 18650 mgmidmo 18698 aannenlem1 26388 funtransport 35995 cgrxfr 36019 btwnxfr 36020 weiunpo 36431 bj-cbv3tb 36753 |
Copyright terms: Public domain | W3C validator |