| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl2ani | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 3-Aug-1999.) |
| Ref | Expression |
|---|---|
| syl2ani.1 | ⊢ (𝜑 → 𝜒) |
| syl2ani.2 | ⊢ (𝜂 → 𝜃) |
| syl2ani.3 | ⊢ (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏)) |
| Ref | Expression |
|---|---|
| syl2ani | ⊢ (𝜓 → ((𝜑 ∧ 𝜂) → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2ani.1 | . 2 ⊢ (𝜑 → 𝜒) | |
| 2 | syl2ani.2 | . . 3 ⊢ (𝜂 → 𝜃) | |
| 3 | syl2ani.3 | . . 3 ⊢ (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏)) | |
| 4 | 2, 3 | sylan2i 606 | . 2 ⊢ (𝜓 → ((𝜒 ∧ 𝜂) → 𝜏)) |
| 5 | 1, 4 | sylani 604 | 1 ⊢ (𝜓 → ((𝜑 ∧ 𝜂) → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: 2mo 2643 fvf1pr 7241 frxp 8056 poxp2 8073 mapen 9054 rex2dom 9137 fin1a2lem9 10296 coprmproddvdslem 16570 psss 18483 mgmidmo 18565 aannenlem1 26261 funtransport 36064 cgrxfr 36088 btwnxfr 36089 weiunpo 36498 bj-cbv3tb 36820 |
| Copyright terms: Public domain | W3C validator |