MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl2ani Structured version   Visualization version   GIF version

Theorem syl2ani 607
Description: A syllogism inference. (Contributed by NM, 3-Aug-1999.)
Hypotheses
Ref Expression
syl2ani.1 (𝜑𝜒)
syl2ani.2 (𝜂𝜃)
syl2ani.3 (𝜓 → ((𝜒𝜃) → 𝜏))
Assertion
Ref Expression
syl2ani (𝜓 → ((𝜑𝜂) → 𝜏))

Proof of Theorem syl2ani
StepHypRef Expression
1 syl2ani.1 . 2 (𝜑𝜒)
2 syl2ani.2 . . 3 (𝜂𝜃)
3 syl2ani.3 . . 3 (𝜓 → ((𝜒𝜃) → 𝜏))
42, 3sylan2i 606 . 2 (𝜓 → ((𝜒𝜂) → 𝜏))
51, 4sylani 604 1 (𝜓 → ((𝜑𝜂) → 𝜏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  2mo  2642  fvf1pr  7285  frxp  8108  poxp2  8125  mapen  9111  rex2dom  9200  fin1a2lem9  10368  coprmproddvdslem  16639  psss  18546  mgmidmo  18594  aannenlem1  26243  funtransport  36026  cgrxfr  36050  btwnxfr  36051  weiunpo  36460  bj-cbv3tb  36782
  Copyright terms: Public domain W3C validator