| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl2ani | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 3-Aug-1999.) |
| Ref | Expression |
|---|---|
| syl2ani.1 | ⊢ (𝜑 → 𝜒) |
| syl2ani.2 | ⊢ (𝜂 → 𝜃) |
| syl2ani.3 | ⊢ (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏)) |
| Ref | Expression |
|---|---|
| syl2ani | ⊢ (𝜓 → ((𝜑 ∧ 𝜂) → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2ani.1 | . 2 ⊢ (𝜑 → 𝜒) | |
| 2 | syl2ani.2 | . . 3 ⊢ (𝜂 → 𝜃) | |
| 3 | syl2ani.3 | . . 3 ⊢ (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏)) | |
| 4 | 2, 3 | sylan2i 606 | . 2 ⊢ (𝜓 → ((𝜒 ∧ 𝜂) → 𝜏)) |
| 5 | 1, 4 | sylani 604 | 1 ⊢ (𝜓 → ((𝜑 ∧ 𝜂) → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: 2mo 2642 fvf1pr 7285 frxp 8108 poxp2 8125 mapen 9111 rex2dom 9200 fin1a2lem9 10368 coprmproddvdslem 16639 psss 18546 mgmidmo 18594 aannenlem1 26243 funtransport 36026 cgrxfr 36050 btwnxfr 36051 weiunpo 36460 bj-cbv3tb 36782 |
| Copyright terms: Public domain | W3C validator |