| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl2ani | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 3-Aug-1999.) |
| Ref | Expression |
|---|---|
| syl2ani.1 | ⊢ (𝜑 → 𝜒) |
| syl2ani.2 | ⊢ (𝜂 → 𝜃) |
| syl2ani.3 | ⊢ (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏)) |
| Ref | Expression |
|---|---|
| syl2ani | ⊢ (𝜓 → ((𝜑 ∧ 𝜂) → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2ani.1 | . 2 ⊢ (𝜑 → 𝜒) | |
| 2 | syl2ani.2 | . . 3 ⊢ (𝜂 → 𝜃) | |
| 3 | syl2ani.3 | . . 3 ⊢ (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏)) | |
| 4 | 2, 3 | sylan2i 606 | . 2 ⊢ (𝜓 → ((𝜒 ∧ 𝜂) → 𝜏)) |
| 5 | 1, 4 | sylani 604 | 1 ⊢ (𝜓 → ((𝜑 ∧ 𝜂) → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: 2mo 2641 fvf1pr 7248 frxp 8066 poxp2 8083 mapen 9065 rex2dom 9152 fin1a2lem9 10321 coprmproddvdslem 16591 psss 18504 mgmidmo 18552 aannenlem1 26252 funtransport 36004 cgrxfr 36028 btwnxfr 36029 weiunpo 36438 bj-cbv3tb 36760 |
| Copyright terms: Public domain | W3C validator |