MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl2ani Structured version   Visualization version   GIF version

Theorem syl2ani 607
Description: A syllogism inference. (Contributed by NM, 3-Aug-1999.)
Hypotheses
Ref Expression
syl2ani.1 (𝜑𝜒)
syl2ani.2 (𝜂𝜃)
syl2ani.3 (𝜓 → ((𝜒𝜃) → 𝜏))
Assertion
Ref Expression
syl2ani (𝜓 → ((𝜑𝜂) → 𝜏))

Proof of Theorem syl2ani
StepHypRef Expression
1 syl2ani.1 . 2 (𝜑𝜒)
2 syl2ani.2 . . 3 (𝜂𝜃)
3 syl2ani.3 . . 3 (𝜓 → ((𝜒𝜃) → 𝜏))
42, 3sylan2i 606 . 2 (𝜓 → ((𝜒𝜂) → 𝜏))
51, 4sylani 604 1 (𝜓 → ((𝜑𝜂) → 𝜏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  2mo  2643  fvf1pr  7241  frxp  8056  poxp2  8073  mapen  9054  rex2dom  9137  fin1a2lem9  10296  coprmproddvdslem  16570  psss  18483  mgmidmo  18565  aannenlem1  26261  funtransport  36064  cgrxfr  36088  btwnxfr  36089  weiunpo  36498  bj-cbv3tb  36820
  Copyright terms: Public domain W3C validator