| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl2ani | Structured version Visualization version GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 3-Aug-1999.) |
| Ref | Expression |
|---|---|
| syl2ani.1 | ⊢ (𝜑 → 𝜒) |
| syl2ani.2 | ⊢ (𝜂 → 𝜃) |
| syl2ani.3 | ⊢ (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏)) |
| Ref | Expression |
|---|---|
| syl2ani | ⊢ (𝜓 → ((𝜑 ∧ 𝜂) → 𝜏)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2ani.1 | . 2 ⊢ (𝜑 → 𝜒) | |
| 2 | syl2ani.2 | . . 3 ⊢ (𝜂 → 𝜃) | |
| 3 | syl2ani.3 | . . 3 ⊢ (𝜓 → ((𝜒 ∧ 𝜃) → 𝜏)) | |
| 4 | 2, 3 | sylan2i 606 | . 2 ⊢ (𝜓 → ((𝜒 ∧ 𝜂) → 𝜏)) |
| 5 | 1, 4 | sylani 604 | 1 ⊢ (𝜓 → ((𝜑 ∧ 𝜂) → 𝜏)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: 2mo 2641 fvf1pr 7282 frxp 8105 poxp2 8122 mapen 9105 rex2dom 9193 fin1a2lem9 10361 coprmproddvdslem 16632 psss 18539 mgmidmo 18587 aannenlem1 26236 funtransport 36019 cgrxfr 36043 btwnxfr 36044 weiunpo 36453 bj-cbv3tb 36775 |
| Copyright terms: Public domain | W3C validator |