MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl2ani Structured version   Visualization version   GIF version

Theorem syl2ani 606
Description: A syllogism inference. (Contributed by NM, 3-Aug-1999.)
Hypotheses
Ref Expression
syl2ani.1 (𝜑𝜒)
syl2ani.2 (𝜂𝜃)
syl2ani.3 (𝜓 → ((𝜒𝜃) → 𝜏))
Assertion
Ref Expression
syl2ani (𝜓 → ((𝜑𝜂) → 𝜏))

Proof of Theorem syl2ani
StepHypRef Expression
1 syl2ani.1 . 2 (𝜑𝜒)
2 syl2ani.2 . . 3 (𝜂𝜃)
3 syl2ani.3 . . 3 (𝜓 → ((𝜒𝜃) → 𝜏))
42, 3sylan2i 605 . 2 (𝜓 → ((𝜒𝜂) → 𝜏))
51, 4sylani 603 1 (𝜓 → ((𝜑𝜂) → 𝜏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  2mo  2651  frxp  7951  mapen  8893  fin1a2lem9  10148  coprmproddvdslem  16348  psss  18279  mgmidmo  18325  aannenlem1  25469  poxp2  33769  funtransport  34312  cgrxfr  34336  btwnxfr  34337  bj-cbv3tb  34948
  Copyright terms: Public domain W3C validator