![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cmnmnd | Structured version Visualization version GIF version |
Description: A commutative monoid is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
cmnmnd | ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2778 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | eqid 2778 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | 1, 2 | iscmn 18597 | . 2 ⊢ (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
4 | 3 | simplbi 493 | 1 ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2107 ∀wral 3090 ‘cfv 6137 (class class class)co 6924 Basecbs 16266 +gcplusg 16349 Mndcmnd 17691 CMndccmn 18590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3400 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-uni 4674 df-br 4889 df-iota 6101 df-fv 6145 df-ov 6927 df-cmn 18592 |
This theorem is referenced by: cmn32 18608 cmn4 18609 cmn12 18610 mulgnn0di 18628 mulgmhm 18630 ghmcmn 18634 prdscmnd 18661 gsumres 18711 gsumcl2 18712 gsumf1o 18714 gsumsubmcl 18716 gsumadd 18720 gsumsplit 18725 gsummhm 18735 gsummulglem 18738 gsuminv 18743 gsumunsnfd 18753 gsumdifsnd 18757 gsum2d 18768 prdsgsum 18774 srgmnd 18907 gsumvsmul 19330 psrbagev1 19917 evlslem3 19921 evlslem1 19922 frlmgsum 20526 frlmup2 20553 islindf4 20592 mdetdiagid 20822 mdetrlin 20824 mdetrsca 20825 gsummatr01lem3 20880 gsummatr01 20882 chpscmat 21065 chp0mat 21069 chpidmat 21070 tmdgsum 22318 tmdgsum2 22319 tsms0 22364 tsmsmhm 22368 tsmsadd 22369 tgptsmscls 22372 tsmssplit 22374 tsmsxplem1 22375 tsmsxplem2 22376 imasdsf1olem 22597 lgseisenlem4 25566 xrge00 30256 xrge0omnd 30281 slmdmnd 30329 gsumle 30349 gsummptres 30354 lbsdiflsp0 30448 xrge0iifmhm 30591 xrge0tmdOLD 30597 esum0 30717 esumsnf 30732 esumcocn 30748 gsumge0cl 41526 sge0tsms 41535 gsumpr 43168 gsumdifsndf 43173 |
Copyright terms: Public domain | W3C validator |