| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cmnmnd | Structured version Visualization version GIF version | ||
| Description: A commutative monoid is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| cmnmnd | ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | eqid 2733 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | 1, 2 | iscmn 19705 | . 2 ⊢ (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
| 4 | 3 | simplbi 497 | 1 ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ‘cfv 6488 (class class class)co 7354 Basecbs 17124 +gcplusg 17165 Mndcmnd 18646 CMndccmn 19696 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-iota 6444 df-fv 6496 df-ov 7357 df-cmn 19698 |
| This theorem is referenced by: cmn32 19716 cmn4 19717 cmn12 19718 cmnmndd 19720 rinvmod 19722 mulgnn0di 19741 mulgmhm 19743 ghmcmn 19747 prdscmnd 19777 gsumres 19829 gsumcl2 19830 gsumf1o 19832 gsumsubmcl 19835 gsumadd 19839 gsumsplit 19844 gsummhm 19854 gsummulglem 19857 gsuminv 19862 gsumpr 19871 gsumunsnfd 19873 gsumdifsnd 19877 gsum2d 19888 prdsgsum 19897 gsumle 20061 srgmnd 20112 gsumvsmul 20863 xrge0omnd 21386 frlmgsum 21713 frlmup2 21740 islindf4 21779 evlslem3 22018 mdetdiagid 22518 mdetrlin 22520 gsummatr01lem3 22575 gsummatr01 22577 chpscmat 22760 chp0mat 22764 chpidmat 22765 tmdgsum 24013 tmdgsum2 24014 tsms0 24060 tsmsmhm 24064 tsmsadd 24065 tgptsmscls 24068 tsmssplit 24070 tsmsxplem1 24071 tsmsxplem2 24072 imasdsf1olem 24291 lgseisenlem4 27319 xrge00 33004 gsumvsmul1 33040 gsummptres 33041 slmdmnd 33184 lbsdiflsp0 33662 xrge0iifmhm 33975 xrge0tmdALT 33982 esum0 34085 esumsnf 34100 esumcocn 34116 aks6d1c1 42232 aks6d1c5lem0 42251 aks6d1c5lem3 42253 aks6d1c5lem2 42254 aks6d1c5 42255 gsumge0cl 46496 sge0tsms 46505 gsumdifsndf 48308 |
| Copyright terms: Public domain | W3C validator |