Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cmnmnd | Structured version Visualization version GIF version |
Description: A commutative monoid is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
cmnmnd | ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | eqid 2738 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | 1, 2 | iscmn 19309 | . 2 ⊢ (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
4 | 3 | simplbi 497 | 1 ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 Mndcmnd 18300 CMndccmn 19301 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-cmn 19303 |
This theorem is referenced by: cmn32 19320 cmn4 19321 cmn12 19322 cmnmndd 19324 rinvmod 19325 mulgnn0di 19342 mulgmhm 19344 ghmcmn 19348 prdscmnd 19377 gsumres 19429 gsumcl2 19430 gsumf1o 19432 gsumsubmcl 19435 gsumadd 19439 gsumsplit 19444 gsummhm 19454 gsummulglem 19457 gsuminv 19462 gsumpr 19471 gsumunsnfd 19473 gsumdifsnd 19477 gsum2d 19488 prdsgsum 19497 srgmnd 19660 gsumvsmul 20102 frlmgsum 20889 frlmup2 20916 islindf4 20955 evlslem3 21200 mdetdiagid 21657 mdetrlin 21659 mdetrsca 21660 gsummatr01lem3 21714 gsummatr01 21716 chpscmat 21899 chp0mat 21903 chpidmat 21904 tmdgsum 23154 tmdgsum2 23155 tsms0 23201 tsmsmhm 23205 tsmsadd 23206 tgptsmscls 23209 tsmssplit 23211 tsmsxplem1 23212 tsmsxplem2 23213 imasdsf1olem 23434 lgseisenlem4 26431 xrge00 31197 gsumvsmul1 31213 gsummptres 31214 xrge0omnd 31239 gsumle 31252 slmdmnd 31361 lbsdiflsp0 31609 xrge0iifmhm 31791 xrge0tmdALT 31798 esum0 31917 esumsnf 31932 esumcocn 31948 gsumge0cl 43799 sge0tsms 43808 gsumdifsndf 45263 |
Copyright terms: Public domain | W3C validator |