| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cmnmnd | Structured version Visualization version GIF version | ||
| Description: A commutative monoid is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| cmnmnd | ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | eqid 2730 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | 1, 2 | iscmn 19726 | . 2 ⊢ (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
| 4 | 3 | simplbi 497 | 1 ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 +gcplusg 17227 Mndcmnd 18668 CMndccmn 19717 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-cmn 19719 |
| This theorem is referenced by: cmn32 19737 cmn4 19738 cmn12 19739 cmnmndd 19741 rinvmod 19743 mulgnn0di 19762 mulgmhm 19764 ghmcmn 19768 prdscmnd 19798 gsumres 19850 gsumcl2 19851 gsumf1o 19853 gsumsubmcl 19856 gsumadd 19860 gsumsplit 19865 gsummhm 19875 gsummulglem 19878 gsuminv 19883 gsumpr 19892 gsumunsnfd 19894 gsumdifsnd 19898 gsum2d 19909 prdsgsum 19918 srgmnd 20106 gsumvsmul 20839 frlmgsum 21688 frlmup2 21715 islindf4 21754 evlslem3 21994 mdetdiagid 22494 mdetrlin 22496 gsummatr01lem3 22551 gsummatr01 22553 chpscmat 22736 chp0mat 22740 chpidmat 22741 tmdgsum 23989 tmdgsum2 23990 tsms0 24036 tsmsmhm 24040 tsmsadd 24041 tgptsmscls 24044 tsmssplit 24046 tsmsxplem1 24047 tsmsxplem2 24048 imasdsf1olem 24268 lgseisenlem4 27296 xrge00 32960 gsumvsmul1 32998 gsummptres 32999 xrge0omnd 33032 gsumle 33045 slmdmnd 33166 lbsdiflsp0 33629 xrge0iifmhm 33936 xrge0tmdALT 33943 esum0 34046 esumsnf 34061 esumcocn 34077 aks6d1c1 42111 aks6d1c5lem0 42130 aks6d1c5lem3 42132 aks6d1c5lem2 42133 aks6d1c5 42134 gsumge0cl 46376 sge0tsms 46385 gsumdifsndf 48173 |
| Copyright terms: Public domain | W3C validator |