Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cmnmnd | Structured version Visualization version GIF version |
Description: A commutative monoid is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
cmnmnd | ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | eqid 2738 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | 1, 2 | iscmn 19394 | . 2 ⊢ (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
4 | 3 | simplbi 498 | 1 ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 Mndcmnd 18385 CMndccmn 19386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-cmn 19388 |
This theorem is referenced by: cmn32 19405 cmn4 19406 cmn12 19407 cmnmndd 19409 rinvmod 19410 mulgnn0di 19427 mulgmhm 19429 ghmcmn 19433 prdscmnd 19462 gsumres 19514 gsumcl2 19515 gsumf1o 19517 gsumsubmcl 19520 gsumadd 19524 gsumsplit 19529 gsummhm 19539 gsummulglem 19542 gsuminv 19547 gsumpr 19556 gsumunsnfd 19558 gsumdifsnd 19562 gsum2d 19573 prdsgsum 19582 srgmnd 19745 gsumvsmul 20187 frlmgsum 20979 frlmup2 21006 islindf4 21045 evlslem3 21290 mdetdiagid 21749 mdetrlin 21751 mdetrsca 21752 gsummatr01lem3 21806 gsummatr01 21808 chpscmat 21991 chp0mat 21995 chpidmat 21996 tmdgsum 23246 tmdgsum2 23247 tsms0 23293 tsmsmhm 23297 tsmsadd 23298 tgptsmscls 23301 tsmssplit 23303 tsmsxplem1 23304 tsmsxplem2 23305 imasdsf1olem 23526 lgseisenlem4 26526 xrge00 31295 gsumvsmul1 31311 gsummptres 31312 xrge0omnd 31337 gsumle 31350 slmdmnd 31459 lbsdiflsp0 31707 xrge0iifmhm 31889 xrge0tmdALT 31896 esum0 32017 esumsnf 32032 esumcocn 32048 gsumge0cl 43909 sge0tsms 43918 gsumdifsndf 45375 |
Copyright terms: Public domain | W3C validator |