| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cmnmnd | Structured version Visualization version GIF version | ||
| Description: A commutative monoid is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| cmnmnd | ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | eqid 2731 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | 1, 2 | iscmn 19702 | . 2 ⊢ (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
| 4 | 3 | simplbi 497 | 1 ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 +gcplusg 17161 Mndcmnd 18642 CMndccmn 19693 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fv 6489 df-ov 7349 df-cmn 19695 |
| This theorem is referenced by: cmn32 19713 cmn4 19714 cmn12 19715 cmnmndd 19717 rinvmod 19719 mulgnn0di 19738 mulgmhm 19740 ghmcmn 19744 prdscmnd 19774 gsumres 19826 gsumcl2 19827 gsumf1o 19829 gsumsubmcl 19832 gsumadd 19836 gsumsplit 19841 gsummhm 19851 gsummulglem 19854 gsuminv 19859 gsumpr 19868 gsumunsnfd 19870 gsumdifsnd 19874 gsum2d 19885 prdsgsum 19894 gsumle 20058 srgmnd 20109 gsumvsmul 20860 xrge0omnd 21383 frlmgsum 21710 frlmup2 21737 islindf4 21776 evlslem3 22016 mdetdiagid 22516 mdetrlin 22518 gsummatr01lem3 22573 gsummatr01 22575 chpscmat 22758 chp0mat 22762 chpidmat 22763 tmdgsum 24011 tmdgsum2 24012 tsms0 24058 tsmsmhm 24062 tsmsadd 24063 tgptsmscls 24066 tsmssplit 24068 tsmsxplem1 24069 tsmsxplem2 24070 imasdsf1olem 24289 lgseisenlem4 27317 xrge00 32993 gsumvsmul1 33029 gsummptres 33030 slmdmnd 33173 lbsdiflsp0 33637 xrge0iifmhm 33950 xrge0tmdALT 33957 esum0 34060 esumsnf 34075 esumcocn 34091 aks6d1c1 42155 aks6d1c5lem0 42174 aks6d1c5lem3 42176 aks6d1c5lem2 42177 aks6d1c5 42178 gsumge0cl 46415 sge0tsms 46424 gsumdifsndf 48218 |
| Copyright terms: Public domain | W3C validator |