| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cmnmnd | Structured version Visualization version GIF version | ||
| Description: A commutative monoid is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| cmnmnd | ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | eqid 2729 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | 1, 2 | iscmn 19719 | . 2 ⊢ (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
| 4 | 3 | simplbi 497 | 1 ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 Mndcmnd 18661 CMndccmn 19710 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-cmn 19712 |
| This theorem is referenced by: cmn32 19730 cmn4 19731 cmn12 19732 cmnmndd 19734 rinvmod 19736 mulgnn0di 19755 mulgmhm 19757 ghmcmn 19761 prdscmnd 19791 gsumres 19843 gsumcl2 19844 gsumf1o 19846 gsumsubmcl 19849 gsumadd 19853 gsumsplit 19858 gsummhm 19868 gsummulglem 19871 gsuminv 19876 gsumpr 19885 gsumunsnfd 19887 gsumdifsnd 19891 gsum2d 19902 prdsgsum 19911 srgmnd 20099 gsumvsmul 20832 frlmgsum 21681 frlmup2 21708 islindf4 21747 evlslem3 21987 mdetdiagid 22487 mdetrlin 22489 gsummatr01lem3 22544 gsummatr01 22546 chpscmat 22729 chp0mat 22733 chpidmat 22734 tmdgsum 23982 tmdgsum2 23983 tsms0 24029 tsmsmhm 24033 tsmsadd 24034 tgptsmscls 24037 tsmssplit 24039 tsmsxplem1 24040 tsmsxplem2 24041 imasdsf1olem 24261 lgseisenlem4 27289 xrge00 32953 gsumvsmul1 32991 gsummptres 32992 xrge0omnd 33025 gsumle 33038 slmdmnd 33159 lbsdiflsp0 33622 xrge0iifmhm 33929 xrge0tmdALT 33936 esum0 34039 esumsnf 34054 esumcocn 34070 aks6d1c1 42104 aks6d1c5lem0 42123 aks6d1c5lem3 42125 aks6d1c5lem2 42126 aks6d1c5 42127 gsumge0cl 46369 sge0tsms 46378 gsumdifsndf 48169 |
| Copyright terms: Public domain | W3C validator |