| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cmnmnd | Structured version Visualization version GIF version | ||
| Description: A commutative monoid is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| cmnmnd | ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | eqid 2735 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | 1, 2 | iscmn 19770 | . 2 ⊢ (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
| 4 | 3 | simplbi 497 | 1 ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 +gcplusg 17271 Mndcmnd 18712 CMndccmn 19761 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6484 df-fv 6539 df-ov 7408 df-cmn 19763 |
| This theorem is referenced by: cmn32 19781 cmn4 19782 cmn12 19783 cmnmndd 19785 rinvmod 19787 mulgnn0di 19806 mulgmhm 19808 ghmcmn 19812 prdscmnd 19842 gsumres 19894 gsumcl2 19895 gsumf1o 19897 gsumsubmcl 19900 gsumadd 19904 gsumsplit 19909 gsummhm 19919 gsummulglem 19922 gsuminv 19927 gsumpr 19936 gsumunsnfd 19938 gsumdifsnd 19942 gsum2d 19953 prdsgsum 19962 srgmnd 20150 gsumvsmul 20883 frlmgsum 21732 frlmup2 21759 islindf4 21798 evlslem3 22038 mdetdiagid 22538 mdetrlin 22540 gsummatr01lem3 22595 gsummatr01 22597 chpscmat 22780 chp0mat 22784 chpidmat 22785 tmdgsum 24033 tmdgsum2 24034 tsms0 24080 tsmsmhm 24084 tsmsadd 24085 tgptsmscls 24088 tsmssplit 24090 tsmsxplem1 24091 tsmsxplem2 24092 imasdsf1olem 24312 lgseisenlem4 27341 xrge00 33007 gsumvsmul1 33045 gsummptres 33046 xrge0omnd 33079 gsumle 33092 slmdmnd 33203 lbsdiflsp0 33666 xrge0iifmhm 33970 xrge0tmdALT 33977 esum0 34080 esumsnf 34095 esumcocn 34111 aks6d1c1 42129 aks6d1c5lem0 42148 aks6d1c5lem3 42150 aks6d1c5lem2 42151 aks6d1c5 42152 gsumge0cl 46400 sge0tsms 46409 gsumdifsndf 48156 |
| Copyright terms: Public domain | W3C validator |