| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cmnmnd | Structured version Visualization version GIF version | ||
| Description: A commutative monoid is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| cmnmnd | ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | eqid 2729 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 3 | 1, 2 | iscmn 19686 | . 2 ⊢ (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
| 4 | 3 | simplbi 497 | 1 ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 +gcplusg 17179 Mndcmnd 18626 CMndccmn 19677 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-iota 6442 df-fv 6494 df-ov 7356 df-cmn 19679 |
| This theorem is referenced by: cmn32 19697 cmn4 19698 cmn12 19699 cmnmndd 19701 rinvmod 19703 mulgnn0di 19722 mulgmhm 19724 ghmcmn 19728 prdscmnd 19758 gsumres 19810 gsumcl2 19811 gsumf1o 19813 gsumsubmcl 19816 gsumadd 19820 gsumsplit 19825 gsummhm 19835 gsummulglem 19838 gsuminv 19843 gsumpr 19852 gsumunsnfd 19854 gsumdifsnd 19858 gsum2d 19869 prdsgsum 19878 gsumle 20042 srgmnd 20093 gsumvsmul 20847 xrge0omnd 21370 frlmgsum 21697 frlmup2 21724 islindf4 21763 evlslem3 22003 mdetdiagid 22503 mdetrlin 22505 gsummatr01lem3 22560 gsummatr01 22562 chpscmat 22745 chp0mat 22749 chpidmat 22750 tmdgsum 23998 tmdgsum2 23999 tsms0 24045 tsmsmhm 24049 tsmsadd 24050 tgptsmscls 24053 tsmssplit 24055 tsmsxplem1 24056 tsmsxplem2 24057 imasdsf1olem 24277 lgseisenlem4 27305 xrge00 32981 gsumvsmul1 33017 gsummptres 33018 slmdmnd 33161 lbsdiflsp0 33601 xrge0iifmhm 33908 xrge0tmdALT 33915 esum0 34018 esumsnf 34033 esumcocn 34049 aks6d1c1 42092 aks6d1c5lem0 42111 aks6d1c5lem3 42113 aks6d1c5lem2 42114 aks6d1c5 42115 gsumge0cl 46356 sge0tsms 46365 gsumdifsndf 48169 |
| Copyright terms: Public domain | W3C validator |