![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cmnmnd | Structured version Visualization version GIF version |
Description: A commutative monoid is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
cmnmnd | ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | eqid 2740 | . . 3 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
3 | 1, 2 | iscmn 19831 | . 2 ⊢ (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)(𝑥(+g‘𝐺)𝑦) = (𝑦(+g‘𝐺)𝑥))) |
4 | 3 | simplbi 497 | 1 ⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 Mndcmnd 18772 CMndccmn 19822 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-cmn 19824 |
This theorem is referenced by: cmn32 19842 cmn4 19843 cmn12 19844 cmnmndd 19846 rinvmod 19848 mulgnn0di 19867 mulgmhm 19869 ghmcmn 19873 prdscmnd 19903 gsumres 19955 gsumcl2 19956 gsumf1o 19958 gsumsubmcl 19961 gsumadd 19965 gsumsplit 19970 gsummhm 19980 gsummulglem 19983 gsuminv 19988 gsumpr 19997 gsumunsnfd 19999 gsumdifsnd 20003 gsum2d 20014 prdsgsum 20023 srgmnd 20217 gsumvsmul 20946 frlmgsum 21815 frlmup2 21842 islindf4 21881 evlslem3 22127 mdetdiagid 22627 mdetrlin 22629 gsummatr01lem3 22684 gsummatr01 22686 chpscmat 22869 chp0mat 22873 chpidmat 22874 tmdgsum 24124 tmdgsum2 24125 tsms0 24171 tsmsmhm 24175 tsmsadd 24176 tgptsmscls 24179 tsmssplit 24181 tsmsxplem1 24182 tsmsxplem2 24183 imasdsf1olem 24404 lgseisenlem4 27440 xrge00 32998 gsumvsmul1 33034 gsummptres 33035 xrge0omnd 33061 gsumle 33074 slmdmnd 33185 lbsdiflsp0 33639 xrge0iifmhm 33885 xrge0tmdALT 33892 esum0 34013 esumsnf 34028 esumcocn 34044 aks6d1c1 42073 aks6d1c5lem0 42092 aks6d1c5lem3 42094 aks6d1c5lem2 42095 aks6d1c5 42096 gsumge0cl 46292 sge0tsms 46301 gsumdifsndf 47904 |
Copyright terms: Public domain | W3C validator |