Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-dfif | Structured version Visualization version GIF version |
Description: Alternate definition of the conditional operator for classes, which used to be the main definition. (Contributed by BJ, 26-Dec-2023.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-dfif | ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝜑 ∧ 𝑥 ∈ 𝐴) ∨ (¬ 𝜑 ∧ 𝑥 ∈ 𝐵))} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-df-ifc 34761 | . 2 ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ if-(𝜑, 𝑥 ∈ 𝐴, 𝑥 ∈ 𝐵)} | |
2 | df-ifp 1061 | . . 3 ⊢ (if-(𝜑, 𝑥 ∈ 𝐴, 𝑥 ∈ 𝐵) ↔ ((𝜑 ∧ 𝑥 ∈ 𝐴) ∨ (¬ 𝜑 ∧ 𝑥 ∈ 𝐵))) | |
3 | 2 | abbii 2808 | . 2 ⊢ {𝑥 ∣ if-(𝜑, 𝑥 ∈ 𝐴, 𝑥 ∈ 𝐵)} = {𝑥 ∣ ((𝜑 ∧ 𝑥 ∈ 𝐴) ∨ (¬ 𝜑 ∧ 𝑥 ∈ 𝐵))} |
4 | 1, 3 | eqtri 2766 | 1 ⊢ if(𝜑, 𝐴, 𝐵) = {𝑥 ∣ ((𝜑 ∧ 𝑥 ∈ 𝐴) ∨ (¬ 𝜑 ∧ 𝑥 ∈ 𝐵))} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 ∨ wo 844 if-wif 1060 = wceq 1539 ∈ wcel 2106 {cab 2715 ifcif 4459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-if 4460 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |