![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eeeanv | Structured version Visualization version GIF version |
Description: Distribute three existential quantifiers over a conjunction. (Contributed by NM, 26-Jul-1995.) (Proof shortened by Andrew Salmon, 25-May-2011.) Reduce distinct variable restrictions. (Revised by Wolf Lammen, 20-Jan-2018.) |
Ref | Expression |
---|---|
eeeanv | ⊢ (∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓 ∧ ∃𝑧𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eeanv 2339 | . . 3 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) | |
2 | 1 | anbi1i 623 | . 2 ⊢ ((∃𝑥∃𝑦(𝜑 ∧ 𝜓) ∧ ∃𝑧𝜒) ↔ ((∃𝑥𝜑 ∧ ∃𝑦𝜓) ∧ ∃𝑧𝜒)) |
3 | df-3an 1086 | . . . . . 6 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
4 | 3 | exbii 1842 | . . . . 5 ⊢ (∃𝑧(𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ∃𝑧((𝜑 ∧ 𝜓) ∧ 𝜒)) |
5 | 19.42v 1949 | . . . . 5 ⊢ (∃𝑧((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ ∃𝑧𝜒)) | |
6 | 4, 5 | bitri 275 | . . . 4 ⊢ (∃𝑧(𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ ∃𝑧𝜒)) |
7 | 6 | 2exbii 1843 | . . 3 ⊢ (∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ∃𝑥∃𝑦((𝜑 ∧ 𝜓) ∧ ∃𝑧𝜒)) |
8 | nfv 1909 | . . . . . 6 ⊢ Ⅎ𝑦𝜒 | |
9 | 8 | nfex 2311 | . . . . 5 ⊢ Ⅎ𝑦∃𝑧𝜒 |
10 | 9 | 19.41 2220 | . . . 4 ⊢ (∃𝑦((𝜑 ∧ 𝜓) ∧ ∃𝑧𝜒) ↔ (∃𝑦(𝜑 ∧ 𝜓) ∧ ∃𝑧𝜒)) |
11 | 10 | exbii 1842 | . . 3 ⊢ (∃𝑥∃𝑦((𝜑 ∧ 𝜓) ∧ ∃𝑧𝜒) ↔ ∃𝑥(∃𝑦(𝜑 ∧ 𝜓) ∧ ∃𝑧𝜒)) |
12 | nfv 1909 | . . . . 5 ⊢ Ⅎ𝑥𝜒 | |
13 | 12 | nfex 2311 | . . . 4 ⊢ Ⅎ𝑥∃𝑧𝜒 |
14 | 13 | 19.41 2220 | . . 3 ⊢ (∃𝑥(∃𝑦(𝜑 ∧ 𝜓) ∧ ∃𝑧𝜒) ↔ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ∧ ∃𝑧𝜒)) |
15 | 7, 11, 14 | 3bitri 297 | . 2 ⊢ (∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ∧ ∃𝑧𝜒)) |
16 | df-3an 1086 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∃𝑦𝜓 ∧ ∃𝑧𝜒) ↔ ((∃𝑥𝜑 ∧ ∃𝑦𝜓) ∧ ∃𝑧𝜒)) | |
17 | 2, 15, 16 | 3bitr4i 303 | 1 ⊢ (∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓 ∧ ∃𝑧𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1084 ∃wex 1773 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-10 2129 ax-11 2146 ax-12 2163 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-ex 1774 df-nf 1778 |
This theorem is referenced by: eloprabgaOLD 7512 |
Copyright terms: Public domain | W3C validator |