|   | Mathbox for BJ | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-nfext | Structured version Visualization version GIF version | ||
| Description: Closed form of nfex 2324. (Contributed by BJ, 10-Oct-2019.) | 
| Ref | Expression | 
|---|---|
| bj-nfext | ⊢ (∀𝑥Ⅎ𝑦𝜑 → Ⅎ𝑦∃𝑥𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nf5 2282 | . . . . 5 ⊢ (Ⅎ𝑦𝜑 ↔ ∀𝑦(𝜑 → ∀𝑦𝜑)) | |
| 2 | 1 | biimpi 216 | . . . 4 ⊢ (Ⅎ𝑦𝜑 → ∀𝑦(𝜑 → ∀𝑦𝜑)) | 
| 3 | 2 | alimi 1811 | . . 3 ⊢ (∀𝑥Ⅎ𝑦𝜑 → ∀𝑥∀𝑦(𝜑 → ∀𝑦𝜑)) | 
| 4 | nfa2 2176 | . . . 4 ⊢ Ⅎ𝑦∀𝑥∀𝑦(𝜑 → ∀𝑦𝜑) | |
| 5 | bj-hbext 36711 | . . . 4 ⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑦𝜑) → (∃𝑥𝜑 → ∀𝑦∃𝑥𝜑)) | |
| 6 | 4, 5 | alrimi 2213 | . . 3 ⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑦𝜑) → ∀𝑦(∃𝑥𝜑 → ∀𝑦∃𝑥𝜑)) | 
| 7 | 3, 6 | syl 17 | . 2 ⊢ (∀𝑥Ⅎ𝑦𝜑 → ∀𝑦(∃𝑥𝜑 → ∀𝑦∃𝑥𝜑)) | 
| 8 | nf5 2282 | . 2 ⊢ (Ⅎ𝑦∃𝑥𝜑 ↔ ∀𝑦(∃𝑥𝜑 → ∀𝑦∃𝑥𝜑)) | |
| 9 | 7, 8 | sylibr 234 | 1 ⊢ (∀𝑥Ⅎ𝑦𝜑 → Ⅎ𝑦∃𝑥𝜑) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∀wal 1538 ∃wex 1779 Ⅎwnf 1783 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2157 ax-12 2177 | 
| This theorem depends on definitions: df-bi 207 df-or 849 df-ex 1780 df-nf 1784 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |