Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nfext Structured version   Visualization version   GIF version

Theorem bj-nfext 36713
Description: Closed form of nfex 2324. (Contributed by BJ, 10-Oct-2019.)
Assertion
Ref Expression
bj-nfext (∀𝑥𝑦𝜑 → Ⅎ𝑦𝑥𝜑)

Proof of Theorem bj-nfext
StepHypRef Expression
1 nf5 2282 . . . . 5 (Ⅎ𝑦𝜑 ↔ ∀𝑦(𝜑 → ∀𝑦𝜑))
21biimpi 216 . . . 4 (Ⅎ𝑦𝜑 → ∀𝑦(𝜑 → ∀𝑦𝜑))
32alimi 1811 . . 3 (∀𝑥𝑦𝜑 → ∀𝑥𝑦(𝜑 → ∀𝑦𝜑))
4 nfa2 2176 . . . 4 𝑦𝑥𝑦(𝜑 → ∀𝑦𝜑)
5 bj-hbext 36711 . . . 4 (∀𝑥𝑦(𝜑 → ∀𝑦𝜑) → (∃𝑥𝜑 → ∀𝑦𝑥𝜑))
64, 5alrimi 2213 . . 3 (∀𝑥𝑦(𝜑 → ∀𝑦𝜑) → ∀𝑦(∃𝑥𝜑 → ∀𝑦𝑥𝜑))
73, 6syl 17 . 2 (∀𝑥𝑦𝜑 → ∀𝑦(∃𝑥𝜑 → ∀𝑦𝑥𝜑))
8 nf5 2282 . 2 (Ⅎ𝑦𝑥𝜑 ↔ ∀𝑦(∃𝑥𝜑 → ∀𝑦𝑥𝜑))
97, 8sylibr 234 1 (∀𝑥𝑦𝜑 → Ⅎ𝑦𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1538  wex 1779  wnf 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-10 2141  ax-11 2157  ax-12 2177
This theorem depends on definitions:  df-bi 207  df-or 849  df-ex 1780  df-nf 1784
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator