![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mof | Structured version Visualization version GIF version |
Description: Version of df-mo 2547 with disjoint variable condition replaced by nonfreeness hypothesis. (Contributed by NM, 8-Mar-1995.) Extract dfmo 2614 from this proof, and prove mof 2575 from it (as of 30-Sep-2022, directly from df-mo 2547). (Revised by Wolf Lammen, 28-May-2019.) Avoid ax-13 2301. (Revised by Wolf Lammen, 16-Oct-2022.) |
Ref | Expression |
---|---|
mof.1 | ⊢ Ⅎ𝑦𝜑 |
Ref | Expression |
---|---|
mof | ⊢ (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mo 2547 | . 2 ⊢ (∃*𝑥𝜑 ↔ ∃𝑧∀𝑥(𝜑 → 𝑥 = 𝑧)) | |
2 | mof.1 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
3 | nfv 1873 | . . . . 5 ⊢ Ⅎ𝑦 𝑥 = 𝑧 | |
4 | 2, 3 | nfim 1859 | . . . 4 ⊢ Ⅎ𝑦(𝜑 → 𝑥 = 𝑧) |
5 | 4 | nfal 2263 | . . 3 ⊢ Ⅎ𝑦∀𝑥(𝜑 → 𝑥 = 𝑧) |
6 | nfv 1873 | . . 3 ⊢ Ⅎ𝑧∀𝑥(𝜑 → 𝑥 = 𝑦) | |
7 | equequ2 1983 | . . . . 5 ⊢ (𝑧 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑥 = 𝑦)) | |
8 | 7 | imbi2d 333 | . . . 4 ⊢ (𝑧 = 𝑦 → ((𝜑 → 𝑥 = 𝑧) ↔ (𝜑 → 𝑥 = 𝑦))) |
9 | 8 | albidv 1879 | . . 3 ⊢ (𝑧 = 𝑦 → (∀𝑥(𝜑 → 𝑥 = 𝑧) ↔ ∀𝑥(𝜑 → 𝑥 = 𝑦))) |
10 | 5, 6, 9 | cbvexv1 2278 | . 2 ⊢ (∃𝑧∀𝑥(𝜑 → 𝑥 = 𝑧) ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
11 | 1, 10 | bitri 267 | 1 ⊢ (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∀wal 1505 ∃wex 1742 Ⅎwnf 1746 ∃*wmo 2545 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-10 2079 ax-11 2093 ax-12 2106 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-ex 1743 df-nf 1747 df-mo 2547 |
This theorem is referenced by: mo3 2577 mo3OLD 2578 mo 2579 rmo2 3774 nmo 30036 bj-eu3f 33653 dffun3f 44150 |
Copyright terms: Public domain | W3C validator |