|   | Mathbox for BJ | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-sbft | Structured version Visualization version GIF version | ||
| Description: Version of sbft 2270 using Ⅎ', proved from core axioms. (Contributed by BJ, 19-Nov-2023.) | 
| Ref | Expression | 
|---|---|
| bj-sbft | ⊢ (Ⅎ'𝑥𝜑 → ([𝑡 / 𝑥]𝜑 ↔ 𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | spsbe 2082 | . . 3 ⊢ ([𝑡 / 𝑥]𝜑 → ∃𝑥𝜑) | |
| 2 | bj-nnfe 36732 | . . 3 ⊢ (Ⅎ'𝑥𝜑 → (∃𝑥𝜑 → 𝜑)) | |
| 3 | 1, 2 | syl5 34 | . 2 ⊢ (Ⅎ'𝑥𝜑 → ([𝑡 / 𝑥]𝜑 → 𝜑)) | 
| 4 | bj-nnfa 36729 | . . 3 ⊢ (Ⅎ'𝑥𝜑 → (𝜑 → ∀𝑥𝜑)) | |
| 5 | stdpc4 2068 | . . 3 ⊢ (∀𝑥𝜑 → [𝑡 / 𝑥]𝜑) | |
| 6 | 4, 5 | syl6 35 | . 2 ⊢ (Ⅎ'𝑥𝜑 → (𝜑 → [𝑡 / 𝑥]𝜑)) | 
| 7 | 3, 6 | impbid 212 | 1 ⊢ (Ⅎ'𝑥𝜑 → ([𝑡 / 𝑥]𝜑 ↔ 𝜑)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∃wex 1779 [wsb 2064 Ⅎ'wnnf 36724 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-bj-nnf 36725 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |