| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-sbft | Structured version Visualization version GIF version | ||
| Description: Version of sbft 2271 using Ⅎ', proved from core axioms. (Contributed by BJ, 19-Nov-2023.) |
| Ref | Expression |
|---|---|
| bj-sbft | ⊢ (Ⅎ'𝑥𝜑 → ([𝑡 / 𝑥]𝜑 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spsbe 2083 | . . 3 ⊢ ([𝑡 / 𝑥]𝜑 → ∃𝑥𝜑) | |
| 2 | bj-nnfe 36754 | . . 3 ⊢ (Ⅎ'𝑥𝜑 → (∃𝑥𝜑 → 𝜑)) | |
| 3 | 1, 2 | syl5 34 | . 2 ⊢ (Ⅎ'𝑥𝜑 → ([𝑡 / 𝑥]𝜑 → 𝜑)) |
| 4 | bj-nnfa 36751 | . . 3 ⊢ (Ⅎ'𝑥𝜑 → (𝜑 → ∀𝑥𝜑)) | |
| 5 | stdpc4 2069 | . . 3 ⊢ (∀𝑥𝜑 → [𝑡 / 𝑥]𝜑) | |
| 6 | 4, 5 | syl6 35 | . 2 ⊢ (Ⅎ'𝑥𝜑 → (𝜑 → [𝑡 / 𝑥]𝜑)) |
| 7 | 3, 6 | impbid 212 | 1 ⊢ (Ⅎ'𝑥𝜑 → ([𝑡 / 𝑥]𝜑 ↔ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∃wex 1779 [wsb 2065 Ⅎ'wnnf 36746 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-bj-nnf 36747 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |