Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-sbft Structured version   Visualization version   GIF version

Theorem bj-sbft 34884
Description: Version of sbft 2265 using Ⅎ', proved from core axioms. (Contributed by BJ, 19-Nov-2023.)
Assertion
Ref Expression
bj-sbft (Ⅎ'𝑥𝜑 → ([𝑡 / 𝑥]𝜑𝜑))

Proof of Theorem bj-sbft
StepHypRef Expression
1 spsbe 2086 . . 3 ([𝑡 / 𝑥]𝜑 → ∃𝑥𝜑)
2 bj-nnfe 34840 . . 3 (Ⅎ'𝑥𝜑 → (∃𝑥𝜑𝜑))
31, 2syl5 34 . 2 (Ⅎ'𝑥𝜑 → ([𝑡 / 𝑥]𝜑𝜑))
4 bj-nnfa 34837 . . 3 (Ⅎ'𝑥𝜑 → (𝜑 → ∀𝑥𝜑))
5 stdpc4 2072 . . 3 (∀𝑥𝜑 → [𝑡 / 𝑥]𝜑)
64, 5syl6 35 . 2 (Ⅎ'𝑥𝜑 → (𝜑 → [𝑡 / 𝑥]𝜑))
73, 6impbid 211 1 (Ⅎ'𝑥𝜑 → ([𝑡 / 𝑥]𝜑𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wex 1783  [wsb 2068  Ⅎ'wnnf 34832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-sb 2069  df-bj-nnf 34833
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator