Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-rababw Structured version   Visualization version   GIF version

Theorem bj-rababw 36876
Description: A weak version of rabab 3481 not using df-clel 2804 nor df-v 3452 (but requiring ax-ext 2702) nor ax-12 2178. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bj-rababw.1 𝜓
Assertion
Ref Expression
bj-rababw {𝑥 ∈ {𝑦𝜓} ∣ 𝜑} = {𝑥𝜑}

Proof of Theorem bj-rababw
StepHypRef Expression
1 df-rab 3409 . 2 {𝑥 ∈ {𝑦𝜓} ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ {𝑦𝜓} ∧ 𝜑)}
2 bj-rababw.1 . . . . 5 𝜓
32vexw 2714 . . . 4 𝑥 ∈ {𝑦𝜓}
43biantrur 530 . . 3 (𝜑 ↔ (𝑥 ∈ {𝑦𝜓} ∧ 𝜑))
54abbii 2797 . 2 {𝑥𝜑} = {𝑥 ∣ (𝑥 ∈ {𝑦𝜓} ∧ 𝜑)}
61, 5eqtr4i 2756 1 {𝑥 ∈ {𝑦𝜓} ∣ 𝜑} = {𝑥𝜑}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  {cab 2708  {crab 3408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-rab 3409
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator