| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-rababw | Structured version Visualization version GIF version | ||
| Description: A weak version of rabab 3481 not using df-clel 2804 nor df-v 3452 (but requiring ax-ext 2702) nor ax-12 2178. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-rababw.1 | ⊢ 𝜓 |
| Ref | Expression |
|---|---|
| bj-rababw | ⊢ {𝑥 ∈ {𝑦 ∣ 𝜓} ∣ 𝜑} = {𝑥 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 3409 | . 2 ⊢ {𝑥 ∈ {𝑦 ∣ 𝜓} ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ {𝑦 ∣ 𝜓} ∧ 𝜑)} | |
| 2 | bj-rababw.1 | . . . . 5 ⊢ 𝜓 | |
| 3 | 2 | vexw 2714 | . . . 4 ⊢ 𝑥 ∈ {𝑦 ∣ 𝜓} |
| 4 | 3 | biantrur 530 | . . 3 ⊢ (𝜑 ↔ (𝑥 ∈ {𝑦 ∣ 𝜓} ∧ 𝜑)) |
| 5 | 4 | abbii 2797 | . 2 ⊢ {𝑥 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ {𝑦 ∣ 𝜓} ∧ 𝜑)} |
| 6 | 1, 5 | eqtr4i 2756 | 1 ⊢ {𝑥 ∈ {𝑦 ∣ 𝜓} ∣ 𝜑} = {𝑥 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2708 {crab 3408 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-rab 3409 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |