Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-rababw Structured version   Visualization version   GIF version

Theorem bj-rababw 35075
Description: A weak version of rabab 3461 not using df-clel 2817 nor df-v 3435 (but requiring ax-ext 2710) nor ax-12 2172. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bj-rababw.1 𝜓
Assertion
Ref Expression
bj-rababw {𝑥 ∈ {𝑦𝜓} ∣ 𝜑} = {𝑥𝜑}

Proof of Theorem bj-rababw
StepHypRef Expression
1 df-rab 3074 . 2 {𝑥 ∈ {𝑦𝜓} ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ {𝑦𝜓} ∧ 𝜑)}
2 bj-rababw.1 . . . . 5 𝜓
32vexw 2722 . . . 4 𝑥 ∈ {𝑦𝜓}
43biantrur 531 . . 3 (𝜑 ↔ (𝑥 ∈ {𝑦𝜓} ∧ 𝜑))
54abbii 2809 . 2 {𝑥𝜑} = {𝑥 ∣ (𝑥 ∈ {𝑦𝜓} ∧ 𝜑)}
61, 5eqtr4i 2770 1 {𝑥 ∈ {𝑦𝜓} ∣ 𝜑} = {𝑥𝜑}
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1539  wcel 2107  {cab 2716  {crab 3069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2117  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-sb 2069  df-clab 2717  df-cleq 2731  df-rab 3074
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator