| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabab | Structured version Visualization version GIF version | ||
| Description: A class abstraction restricted to the universe is unrestricted. (Contributed by NM, 27-Dec-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| rabab | ⊢ {𝑥 ∈ V ∣ 𝜑} = {𝑥 ∣ 𝜑} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rab 3396 | . 2 ⊢ {𝑥 ∈ V ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ V ∧ 𝜑)} | |
| 2 | vex 3440 | . . . 4 ⊢ 𝑥 ∈ V | |
| 3 | 2 | biantrur 530 | . . 3 ⊢ (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑)) |
| 4 | 3 | abbii 2798 | . 2 ⊢ {𝑥 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ V ∧ 𝜑)} |
| 5 | 1, 4 | eqtr4i 2757 | 1 ⊢ {𝑥 ∈ V ∣ 𝜑} = {𝑥 ∣ 𝜑} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 {cab 2709 {crab 3395 Vcvv 3436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 |
| This theorem is referenced by: notab 4264 intmin2 4925 euen1 8949 dfttrcl2 9614 cardf2 9836 hsmex2 10324 tz9.1regs 35128 fmla0 35424 fmla0xp 35425 fmla0disjsuc 35440 imageval 35970 dfrcl2 43713 |
| Copyright terms: Public domain | W3C validator |