Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rabab | Structured version Visualization version GIF version |
Description: A class abstraction restricted to the universe is unrestricted. (Contributed by NM, 27-Dec-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
rabab | ⊢ {𝑥 ∈ V ∣ 𝜑} = {𝑥 ∣ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rab 3072 | . 2 ⊢ {𝑥 ∈ V ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ V ∧ 𝜑)} | |
2 | vex 3426 | . . . 4 ⊢ 𝑥 ∈ V | |
3 | 2 | biantrur 530 | . . 3 ⊢ (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑)) |
4 | 3 | abbii 2809 | . 2 ⊢ {𝑥 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ V ∧ 𝜑)} |
5 | 1, 4 | eqtr4i 2769 | 1 ⊢ {𝑥 ∈ V ∣ 𝜑} = {𝑥 ∣ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2108 {cab 2715 {crab 3067 Vcvv 3422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 |
This theorem is referenced by: notab 4235 intmin2 4903 euen1 8770 cardf2 9632 hsmex2 10120 fmla0 33244 fmla0xp 33245 fmla0disjsuc 33260 dfttrcl2 33710 imageval 34159 rmxyelqirr 40648 dfrcl2 41171 |
Copyright terms: Public domain | W3C validator |