MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabab Structured version   Visualization version   GIF version

Theorem rabab 3500
Description: A class abstraction restricted to the universe is unrestricted. (Contributed by NM, 27-Dec-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Assertion
Ref Expression
rabab {𝑥 ∈ V ∣ 𝜑} = {𝑥𝜑}

Proof of Theorem rabab
StepHypRef Expression
1 df-rab 3430 . 2 {𝑥 ∈ V ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ V ∧ 𝜑)}
2 vex 3475 . . . 4 𝑥 ∈ V
32biantrur 530 . . 3 (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑))
43abbii 2798 . 2 {𝑥𝜑} = {𝑥 ∣ (𝑥 ∈ V ∧ 𝜑)}
51, 4eqtr4i 2759 1 {𝑥 ∈ V ∣ 𝜑} = {𝑥𝜑}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1534  wcel 2099  {cab 2705  {crab 3429  Vcvv 3471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-rab 3430  df-v 3473
This theorem is referenced by:  notab  4305  intmin2  4978  euen1  9051  dfttrcl2  9748  cardf2  9967  hsmex2  10457  fmla0  34992  fmla0xp  34993  fmla0disjsuc  35008  imageval  35526  rmxyelqirrOLD  42331  dfrcl2  43104
  Copyright terms: Public domain W3C validator