MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabab Structured version   Visualization version   GIF version

Theorem rabab 3501
Description: A class abstraction restricted to the universe is unrestricted. (Contributed by NM, 27-Dec-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Assertion
Ref Expression
rabab {𝑥 ∈ V ∣ 𝜑} = {𝑥𝜑}

Proof of Theorem rabab
StepHypRef Expression
1 df-rab 3432 . 2 {𝑥 ∈ V ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ V ∧ 𝜑)}
2 vex 3477 . . . 4 𝑥 ∈ V
32biantrur 531 . . 3 (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑))
43abbii 2801 . 2 {𝑥𝜑} = {𝑥 ∣ (𝑥 ∈ V ∧ 𝜑)}
51, 4eqtr4i 2762 1 {𝑥 ∈ V ∣ 𝜑} = {𝑥𝜑}
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1541  wcel 2106  {cab 2708  {crab 3431  Vcvv 3473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2709  df-cleq 2723  df-clel 2809  df-rab 3432  df-v 3475
This theorem is referenced by:  notab  4300  intmin2  4972  euen1  9009  dfttrcl2  9701  cardf2  9920  hsmex2  10410  fmla0  34204  fmla0xp  34205  fmla0disjsuc  34220  imageval  34732  rmxyelqirrOLD  41420  dfrcl2  42196
  Copyright terms: Public domain W3C validator