MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabab Structured version   Visualization version   GIF version

Theorem rabab 3495
Description: A class abstraction restricted to the universe is unrestricted. (Contributed by NM, 27-Dec-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Assertion
Ref Expression
rabab {𝑥 ∈ V ∣ 𝜑} = {𝑥𝜑}

Proof of Theorem rabab
StepHypRef Expression
1 df-rab 3425 . 2 {𝑥 ∈ V ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ V ∧ 𝜑)}
2 vex 3470 . . . 4 𝑥 ∈ V
32biantrur 530 . . 3 (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑))
43abbii 2794 . 2 {𝑥𝜑} = {𝑥 ∣ (𝑥 ∈ V ∧ 𝜑)}
51, 4eqtr4i 2755 1 {𝑥 ∈ V ∣ 𝜑} = {𝑥𝜑}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1533  wcel 2098  {cab 2701  {crab 3424  Vcvv 3466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-rab 3425  df-v 3468
This theorem is referenced by:  notab  4297  intmin2  4970  euen1  9023  dfttrcl2  9716  cardf2  9935  hsmex2  10425  fmla0  34891  fmla0xp  34892  fmla0disjsuc  34907  imageval  35425  rmxyelqirrOLD  42201  dfrcl2  42975
  Copyright terms: Public domain W3C validator