MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabab Structured version   Visualization version   GIF version

Theorem rabab 3466
Description: A class abstraction restricted to the universe is unrestricted. (Contributed by NM, 27-Dec-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Assertion
Ref Expression
rabab {𝑥 ∈ V ∣ 𝜑} = {𝑥𝜑}

Proof of Theorem rabab
StepHypRef Expression
1 df-rab 3114 . 2 {𝑥 ∈ V ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ V ∧ 𝜑)}
2 vex 3440 . . . 4 𝑥 ∈ V
32biantrur 531 . . 3 (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑))
43abbii 2861 . 2 {𝑥𝜑} = {𝑥 ∣ (𝑥 ∈ V ∧ 𝜑)}
51, 4eqtr4i 2822 1 {𝑥 ∈ V ∣ 𝜑} = {𝑥𝜑}
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1522  wcel 2081  {cab 2775  {crab 3109  Vcvv 3437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-ext 2769
This theorem depends on definitions:  df-bi 208  df-an 397  df-ex 1762  df-sb 2043  df-clab 2776  df-cleq 2788  df-clel 2863  df-rab 3114  df-v 3439
This theorem is referenced by:  notab  4193  intmin2  4809  euen1  8427  cardf2  9218  hsmex2  9701  fmla0  32237  fmla0xp  32238  fmla0disjsuc  32253  imageval  33000  rmxyelqirr  38992  dfrcl2  39504
  Copyright terms: Public domain W3C validator