Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabab Structured version   Visualization version   GIF version

Theorem rabab 3470
 Description: A class abstraction restricted to the universe is unrestricted. (Contributed by NM, 27-Dec-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Assertion
Ref Expression
rabab {𝑥 ∈ V ∣ 𝜑} = {𝑥𝜑}

Proof of Theorem rabab
StepHypRef Expression
1 df-rab 3115 . 2 {𝑥 ∈ V ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ V ∧ 𝜑)}
2 vex 3444 . . . 4 𝑥 ∈ V
32biantrur 534 . . 3 (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑))
43abbii 2863 . 2 {𝑥𝜑} = {𝑥 ∣ (𝑥 ∈ V ∧ 𝜑)}
51, 4eqtr4i 2824 1 {𝑥 ∈ V ∣ 𝜑} = {𝑥𝜑}
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 399   = wceq 1538   ∈ wcel 2111  {cab 2776  {crab 3110  Vcvv 3441 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-ext 2770 This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1782  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-rab 3115  df-v 3443 This theorem is referenced by:  notab  4225  intmin2  4865  euen1  8562  cardf2  9356  hsmex2  9844  fmla0  32742  fmla0xp  32743  fmla0disjsuc  32758  imageval  33504  rmxyelqirr  39849  dfrcl2  40373
 Copyright terms: Public domain W3C validator