| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-rexvw | Structured version Visualization version GIF version | ||
| Description: A weak version of rexv 3493 not using ax-ext 2706 (nor df-cleq 2726, df-clel 2808, df-v 3466), and only core FOL axioms. See also bj-ralvw 36821. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-rexvw.1 | ⊢ 𝜓 |
| Ref | Expression |
|---|---|
| bj-rexvw | ⊢ (∃𝑥 ∈ {𝑦 ∣ 𝜓}𝜑 ↔ ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 3060 | . 2 ⊢ (∃𝑥 ∈ {𝑦 ∣ 𝜓}𝜑 ↔ ∃𝑥(𝑥 ∈ {𝑦 ∣ 𝜓} ∧ 𝜑)) | |
| 2 | bj-rexvw.1 | . . . . 5 ⊢ 𝜓 | |
| 3 | 2 | vexw 2718 | . . . 4 ⊢ 𝑥 ∈ {𝑦 ∣ 𝜓} |
| 4 | 3 | biantrur 530 | . . 3 ⊢ (𝜑 ↔ (𝑥 ∈ {𝑦 ∣ 𝜓} ∧ 𝜑)) |
| 5 | 4 | exbii 1847 | . 2 ⊢ (∃𝑥𝜑 ↔ ∃𝑥(𝑥 ∈ {𝑦 ∣ 𝜓} ∧ 𝜑)) |
| 6 | 1, 5 | bitr4i 278 | 1 ⊢ (∃𝑥 ∈ {𝑦 ∣ 𝜓}𝜑 ↔ ∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1778 ∈ wcel 2107 {cab 2712 ∃wrex 3059 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-sb 2064 df-clab 2713 df-rex 3060 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |