Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-rexvw | Structured version Visualization version GIF version |
Description: A weak version of rexv 3457 not using ax-ext 2709 (nor df-cleq 2730, df-clel 2816, df-v 3434), and only core FOL axioms. See also bj-ralvw 35064. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-rexvw.1 | ⊢ 𝜓 |
Ref | Expression |
---|---|
bj-rexvw | ⊢ (∃𝑥 ∈ {𝑦 ∣ 𝜓}𝜑 ↔ ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 3070 | . 2 ⊢ (∃𝑥 ∈ {𝑦 ∣ 𝜓}𝜑 ↔ ∃𝑥(𝑥 ∈ {𝑦 ∣ 𝜓} ∧ 𝜑)) | |
2 | bj-rexvw.1 | . . . . 5 ⊢ 𝜓 | |
3 | 2 | vexw 2721 | . . . 4 ⊢ 𝑥 ∈ {𝑦 ∣ 𝜓} |
4 | 3 | biantrur 531 | . . 3 ⊢ (𝜑 ↔ (𝑥 ∈ {𝑦 ∣ 𝜓} ∧ 𝜑)) |
5 | 4 | exbii 1850 | . 2 ⊢ (∃𝑥𝜑 ↔ ∃𝑥(𝑥 ∈ {𝑦 ∣ 𝜓} ∧ 𝜑)) |
6 | 1, 5 | bitr4i 277 | 1 ⊢ (∃𝑥 ∈ {𝑦 ∣ 𝜓}𝜑 ↔ ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∃wex 1782 ∈ wcel 2106 {cab 2715 ∃wrex 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-sb 2068 df-clab 2716 df-rex 3070 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |