Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-rexvw Structured version   Visualization version   GIF version

Theorem bj-rexvw 34992
Description: A weak version of rexv 3447 not using ax-ext 2709 (nor df-cleq 2730, df-clel 2817, df-v 3424), and only core FOL axioms. See also bj-ralvw 34991. (Contributed by BJ, 16-Jun-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bj-rexvw.1 𝜓
Assertion
Ref Expression
bj-rexvw (∃𝑥 ∈ {𝑦𝜓}𝜑 ↔ ∃𝑥𝜑)

Proof of Theorem bj-rexvw
StepHypRef Expression
1 df-rex 3069 . 2 (∃𝑥 ∈ {𝑦𝜓}𝜑 ↔ ∃𝑥(𝑥 ∈ {𝑦𝜓} ∧ 𝜑))
2 bj-rexvw.1 . . . . 5 𝜓
32vexw 2721 . . . 4 𝑥 ∈ {𝑦𝜓}
43biantrur 530 . . 3 (𝜑 ↔ (𝑥 ∈ {𝑦𝜓} ∧ 𝜑))
54exbii 1851 . 2 (∃𝑥𝜑 ↔ ∃𝑥(𝑥 ∈ {𝑦𝜓} ∧ 𝜑))
61, 5bitr4i 277 1 (∃𝑥 ∈ {𝑦𝜓}𝜑 ↔ ∃𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wex 1783  wcel 2108  {cab 2715  wrex 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-sb 2069  df-clab 2716  df-rex 3069
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator