Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rabeq | Structured version Visualization version GIF version |
Description: Equality theorem for restricted class abstractions. (Contributed by NM, 15-Oct-2003.) Avoid ax-10 2137, ax-11 2154, ax-12 2171. (Revised by Gino Giotto, 20-Aug-2023.) |
Ref | Expression |
---|---|
rabeq | ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2827 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | 1 | anbi1d 630 | . 2 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
3 | 2 | rabbidva2 3411 | 1 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 {crab 3068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 |
This theorem is referenced by: rabeqdv 3419 difeq1 4050 ineq1 4139 ifeq1 4463 ifeq2 4464 elfvmptrab 6903 supp0 7982 supeq2 9207 oieq2 9272 scott0 9644 mrcfval 17317 ipoval 18248 psgnfval 19108 dsmmelbas 20946 psrval 21118 ltbval 21244 opsrval 21247 m1detdiag 21746 isptfin 22667 islocfin 22668 kqval 22877 incistruhgr 27449 uvtx0 27761 vtxdg0e 27841 1hevtxdg1 27873 hashecclwwlkn1 28441 umgrhashecclwwlk 28442 ordtrestNEW 31871 ordtrest2NEWlem 31872 omsval 32260 orrvcval4 32431 orrvcoel 32432 orrvccel 32433 funray 34442 fvray 34443 itg2addnclem2 35829 cntotbnd 35954 lcfr 39599 hlhilocv 39975 pellfundval 40702 elmnc 40961 rgspnval 40993 rfovd 41609 fsovd 41616 fsovcnvlem 41621 ntrneibex 41683 dvnprodlem1 43487 dvnprodlem2 43488 dvnprodlem3 43489 dvnprod 43490 fvmptrab 44784 rmsuppss 45706 mndpsuppss 45707 scmsuppss 45708 dmatALTbas 45742 |
Copyright terms: Public domain | W3C validator |