Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rabeq | Structured version Visualization version GIF version |
Description: Equality theorem for restricted class abstractions. (Contributed by NM, 15-Oct-2003.) Avoid ax-10 2139, ax-11 2156, ax-12 2173. (Revised by Gino Giotto, 20-Aug-2023.) |
Ref | Expression |
---|---|
rabeq | ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2827 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | 1 | anbi1d 629 | . 2 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
3 | 2 | rabbidva2 3400 | 1 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 {crab 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 |
This theorem is referenced by: rabeqdv 3409 difeq1 4046 ineq1 4136 ifeq1 4460 ifeq2 4461 elfvmptrab 6885 supp0 7953 supeq2 9137 oieq2 9202 scott0 9575 mrcfval 17234 ipoval 18163 psgnfval 19023 dsmmelbas 20856 psrval 21028 ltbval 21154 opsrval 21157 m1detdiag 21654 isptfin 22575 islocfin 22576 kqval 22785 incistruhgr 27352 uvtx0 27664 vtxdg0e 27744 1hevtxdg1 27776 hashecclwwlkn1 28342 umgrhashecclwwlk 28343 ordtrestNEW 31773 ordtrest2NEWlem 31774 omsval 32160 orrvcval4 32331 orrvcoel 32332 orrvccel 32333 funray 34369 fvray 34370 itg2addnclem2 35756 cntotbnd 35881 lcfr 39526 hlhilocv 39902 pellfundval 40618 elmnc 40877 rgspnval 40909 rfovd 41498 fsovd 41505 fsovcnvlem 41510 ntrneibex 41572 dvnprodlem1 43377 dvnprodlem2 43378 dvnprodlem3 43379 dvnprod 43380 fvmptrab 44671 rmsuppss 45594 mndpsuppss 45595 scmsuppss 45596 dmatALTbas 45630 |
Copyright terms: Public domain | W3C validator |