| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabeq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for restricted class abstractions. (Contributed by NM, 15-Oct-2003.) Avoid ax-10 2142, ax-11 2158, ax-12 2178. (Revised by GG, 20-Aug-2023.) |
| Ref | Expression |
|---|---|
| rabeq | ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2818 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | 1 | anbi1d 631 | . 2 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
| 3 | 2 | rabbidva2 3410 | 1 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3408 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 |
| This theorem is referenced by: rabeqdv 3424 difeq1 4085 ineq1 4179 ifeq1 4495 ifeq2 4496 elfvmptrab 7000 supp0 8147 supeq2 9406 oieq2 9473 scott0 9846 mrcfval 17576 ipoval 18496 mndpsuppss 18699 psgnfval 19437 rgspnval 20528 dsmmelbas 21655 psrval 21831 ltbval 21957 opsrval 21960 m1detdiag 22491 isptfin 23410 islocfin 23411 kqval 23620 incistruhgr 29013 uvtx0 29328 vtxdg0e 29409 1hevtxdg1 29441 hashecclwwlkn1 30013 umgrhashecclwwlk 30014 ordtrestNEW 33918 ordtrest2NEWlem 33919 omsval 34291 orrvcval4 34463 orrvcoel 34464 orrvccel 34465 funray 36135 fvray 36136 itg2addnclem2 37673 cntotbnd 37797 lcfr 41586 hlhilocv 41958 pellfundval 42875 elmnc 43132 rfovd 43997 fsovd 44004 fsovcnvlem 44009 ntrneibex 44069 dvnprodlem2 45952 dvnprodlem3 45953 dvnprod 45954 fvmptrab 47297 rmsuppss 48362 scmsuppss 48363 dmatALTbas 48394 |
| Copyright terms: Public domain | W3C validator |