| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabeq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for restricted class abstractions. (Contributed by NM, 15-Oct-2003.) Avoid ax-10 2144, ax-11 2160, ax-12 2180. (Revised by GG, 20-Aug-2023.) |
| Ref | Expression |
|---|---|
| rabeq | ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2820 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | 1 | anbi1d 631 | . 2 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
| 3 | 2 | rabbidva2 3397 | 1 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {crab 3395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 |
| This theorem is referenced by: rabeqdv 3410 difeq1 4066 ineq1 4160 ifeq1 4476 ifeq2 4477 elfvmptrab 6958 supp0 8095 supeq2 9332 oieq2 9399 scott0 9779 mrcfval 17514 ipoval 18436 chneq2 18519 mndpsuppss 18673 psgnfval 19412 rgspnval 20527 dsmmelbas 21676 psrval 21852 ltbval 21978 opsrval 21981 m1detdiag 22512 isptfin 23431 islocfin 23432 kqval 23641 incistruhgr 29057 uvtx0 29372 vtxdg0e 29453 1hevtxdg1 29485 hashecclwwlkn1 30057 umgrhashecclwwlk 30058 ordtrestNEW 33934 ordtrest2NEWlem 33935 omsval 34306 orrvcval4 34478 orrvcoel 34479 orrvccel 34480 funray 36184 fvray 36185 itg2addnclem2 37722 cntotbnd 37846 lcfr 41694 hlhilocv 42066 pellfundval 42983 elmnc 43239 rfovd 44104 fsovd 44111 fsovcnvlem 44116 ntrneibex 44176 dvnprodlem2 46055 dvnprodlem3 46056 dvnprod 46057 fvmptrab 47402 rmsuppss 48480 scmsuppss 48481 dmatALTbas 48512 |
| Copyright terms: Public domain | W3C validator |