![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabeq | Structured version Visualization version GIF version |
Description: Equality theorem for restricted class abstractions. (Contributed by NM, 15-Oct-2003.) Avoid ax-10 2141, ax-11 2158, ax-12 2178. (Revised by GG, 20-Aug-2023.) |
Ref | Expression |
---|---|
rabeq | ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2833 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | 1 | anbi1d 630 | . 2 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
3 | 2 | rabbidva2 3445 | 1 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 {crab 3443 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 |
This theorem is referenced by: rabeqdv 3459 difeq1 4142 ineq1 4234 ifeq1 4552 ifeq2 4553 elfvmptrab 7058 supp0 8206 supeq2 9517 oieq2 9582 scott0 9955 mrcfval 17666 ipoval 18600 psgnfval 19542 dsmmelbas 21782 psrval 21958 ltbval 22084 opsrval 22087 m1detdiag 22624 isptfin 23545 islocfin 23546 kqval 23755 incistruhgr 29114 uvtx0 29429 vtxdg0e 29510 1hevtxdg1 29542 hashecclwwlkn1 30109 umgrhashecclwwlk 30110 ordtrestNEW 33867 ordtrest2NEWlem 33868 omsval 34258 orrvcval4 34429 orrvcoel 34430 orrvccel 34431 funray 36104 fvray 36105 itg2addnclem2 37632 cntotbnd 37756 lcfr 41542 hlhilocv 41918 pellfundval 42836 elmnc 43093 rgspnval 43125 rfovd 43963 fsovd 43970 fsovcnvlem 43975 ntrneibex 44035 dvnprodlem1 45867 dvnprodlem2 45868 dvnprodlem3 45869 dvnprod 45870 fvmptrab 47207 rmsuppss 48095 mndpsuppss 48096 scmsuppss 48097 dmatALTbas 48130 |
Copyright terms: Public domain | W3C validator |