MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabeq Structured version   Visualization version   GIF version

Theorem rabeq 3408
Description: Equality theorem for restricted class abstractions. (Contributed by NM, 15-Oct-2003.) Avoid ax-10 2139, ax-11 2156, ax-12 2173. (Revised by Gino Giotto, 20-Aug-2023.)
Assertion
Ref Expression
rabeq (𝐴 = 𝐵 → {𝑥𝐴𝜑} = {𝑥𝐵𝜑})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rabeq
StepHypRef Expression
1 eleq2 2827 . . 3 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
21anbi1d 629 . 2 (𝐴 = 𝐵 → ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜑)))
32rabbidva2 3400 1 (𝐴 = 𝐵 → {𝑥𝐴𝜑} = {𝑥𝐵𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  {crab 3067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072
This theorem is referenced by:  rabeqdv  3409  difeq1  4046  ineq1  4136  ifeq1  4460  ifeq2  4461  elfvmptrab  6885  supp0  7953  supeq2  9137  oieq2  9202  scott0  9575  mrcfval  17234  ipoval  18163  psgnfval  19023  dsmmelbas  20856  psrval  21028  ltbval  21154  opsrval  21157  m1detdiag  21654  isptfin  22575  islocfin  22576  kqval  22785  incistruhgr  27352  uvtx0  27664  vtxdg0e  27744  1hevtxdg1  27776  hashecclwwlkn1  28342  umgrhashecclwwlk  28343  ordtrestNEW  31773  ordtrest2NEWlem  31774  omsval  32160  orrvcval4  32331  orrvcoel  32332  orrvccel  32333  funray  34369  fvray  34370  itg2addnclem2  35756  cntotbnd  35881  lcfr  39526  hlhilocv  39902  pellfundval  40618  elmnc  40877  rgspnval  40909  rfovd  41498  fsovd  41505  fsovcnvlem  41510  ntrneibex  41572  dvnprodlem1  43377  dvnprodlem2  43378  dvnprodlem3  43379  dvnprod  43380  fvmptrab  44671  rmsuppss  45594  mndpsuppss  45595  scmsuppss  45596  dmatALTbas  45630
  Copyright terms: Public domain W3C validator