![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabeq | Structured version Visualization version GIF version |
Description: Equality theorem for restricted class abstractions. (Contributed by NM, 15-Oct-2003.) Avoid ax-10 2138, ax-11 2155, ax-12 2172. (Revised by Gino Giotto, 20-Aug-2023.) |
Ref | Expression |
---|---|
rabeq | ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2823 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | 1 | anbi1d 631 | . 2 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
3 | 2 | rabbidva2 3435 | 1 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 {crab 3433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 |
This theorem is referenced by: rabeqdv 3448 difeq1 4116 ineq1 4206 ifeq1 4533 ifeq2 4534 elfvmptrab 7027 supp0 8151 supeq2 9443 oieq2 9508 scott0 9881 mrcfval 17552 ipoval 18483 psgnfval 19368 dsmmelbas 21294 psrval 21468 ltbval 21598 opsrval 21601 m1detdiag 22099 isptfin 23020 islocfin 23021 kqval 23230 incistruhgr 28339 uvtx0 28651 vtxdg0e 28731 1hevtxdg1 28763 hashecclwwlkn1 29330 umgrhashecclwwlk 29331 ordtrestNEW 32901 ordtrest2NEWlem 32902 omsval 33292 orrvcval4 33463 orrvcoel 33464 orrvccel 33465 funray 35112 fvray 35113 itg2addnclem2 36540 cntotbnd 36664 lcfr 40456 hlhilocv 40832 pellfundval 41618 elmnc 41878 rgspnval 41910 rfovd 42752 fsovd 42759 fsovcnvlem 42764 ntrneibex 42824 dvnprodlem1 44662 dvnprodlem2 44663 dvnprodlem3 44664 dvnprod 44665 fvmptrab 46000 rmsuppss 47046 mndpsuppss 47047 scmsuppss 47048 dmatALTbas 47082 |
Copyright terms: Public domain | W3C validator |