Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rabeq | Structured version Visualization version GIF version |
Description: Equality theorem for restricted class abstractions. (Contributed by NM, 15-Oct-2003.) Avoid ax-10 2143, ax-11 2159, ax-12 2176. (Revised by Gino Giotto, 20-Aug-2023.) |
Ref | Expression |
---|---|
rabeq | ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2841 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | 1 | anbi1d 633 | . 2 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
3 | 2 | rabbidva2 3389 | 1 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2112 {crab 3075 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2730 |
This theorem depends on definitions: df-bi 210 df-an 401 df-ex 1783 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-rab 3080 |
This theorem is referenced by: rabeqdv 3398 difeq1 4022 ineq1 4110 ifeq1 4425 ifeq2 4426 elfvmptrab 6788 supp0 7841 supeq2 8946 oieq2 9011 scott0 9349 mrcfval 16938 ipoval 17831 psgnfval 18696 dsmmelbas 20505 psrval 20678 ltbval 20804 opsrval 20807 m1detdiag 21298 isptfin 22217 islocfin 22218 kqval 22427 incistruhgr 26972 uvtx0 27284 vtxdg0e 27364 1hevtxdg1 27396 hashecclwwlkn1 27962 umgrhashecclwwlk 27963 ordtrestNEW 31393 ordtrest2NEWlem 31394 omsval 31780 orrvcval4 31951 orrvcoel 31952 orrvccel 31953 funray 33992 fvray 33993 itg2addnclem2 35390 cntotbnd 35515 lcfr 39162 hlhilocv 39534 pellfundval 40195 elmnc 40454 rgspnval 40486 rfovd 41076 fsovd 41083 fsovcnvlem 41088 ntrneibex 41150 dvnprodlem1 42955 dvnprodlem2 42956 dvnprodlem3 42957 dvnprod 42958 fvmptrab 44217 rmsuppss 45140 mndpsuppss 45141 scmsuppss 45142 dmatALTbas 45176 |
Copyright terms: Public domain | W3C validator |