| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabeq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for restricted class abstractions. (Contributed by NM, 15-Oct-2003.) Avoid ax-10 2142, ax-11 2158, ax-12 2178. (Revised by GG, 20-Aug-2023.) |
| Ref | Expression |
|---|---|
| rabeq | ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2817 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | 1 | anbi1d 631 | . 2 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
| 3 | 2 | rabbidva2 3407 | 1 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3405 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 |
| This theorem is referenced by: rabeqdv 3421 difeq1 4082 ineq1 4176 ifeq1 4492 ifeq2 4493 elfvmptrab 6997 supp0 8144 supeq2 9399 oieq2 9466 scott0 9839 mrcfval 17569 ipoval 18489 mndpsuppss 18692 psgnfval 19430 rgspnval 20521 dsmmelbas 21648 psrval 21824 ltbval 21950 opsrval 21953 m1detdiag 22484 isptfin 23403 islocfin 23404 kqval 23613 incistruhgr 29006 uvtx0 29321 vtxdg0e 29402 1hevtxdg1 29434 hashecclwwlkn1 30006 umgrhashecclwwlk 30007 ordtrestNEW 33911 ordtrest2NEWlem 33912 omsval 34284 orrvcval4 34456 orrvcoel 34457 orrvccel 34458 funray 36128 fvray 36129 itg2addnclem2 37666 cntotbnd 37790 lcfr 41579 hlhilocv 41951 pellfundval 42868 elmnc 43125 rfovd 43990 fsovd 43997 fsovcnvlem 44002 ntrneibex 44062 dvnprodlem2 45945 dvnprodlem3 45946 dvnprod 45947 fvmptrab 47293 rmsuppss 48358 scmsuppss 48359 dmatALTbas 48390 |
| Copyright terms: Public domain | W3C validator |