| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabeq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for restricted class abstractions. (Contributed by NM, 15-Oct-2003.) Avoid ax-10 2142, ax-11 2158, ax-12 2178. (Revised by GG, 20-Aug-2023.) |
| Ref | Expression |
|---|---|
| rabeq | ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2817 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | 1 | anbi1d 631 | . 2 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
| 3 | 2 | rabbidva2 3396 | 1 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3394 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 |
| This theorem is referenced by: rabeqdv 3410 difeq1 4070 ineq1 4164 ifeq1 4480 ifeq2 4481 elfvmptrab 6959 supp0 8098 supeq2 9338 oieq2 9405 scott0 9782 mrcfval 17514 ipoval 18436 mndpsuppss 18639 psgnfval 19379 rgspnval 20497 dsmmelbas 21646 psrval 21822 ltbval 21948 opsrval 21951 m1detdiag 22482 isptfin 23401 islocfin 23402 kqval 23611 incistruhgr 29024 uvtx0 29339 vtxdg0e 29420 1hevtxdg1 29452 hashecclwwlkn1 30021 umgrhashecclwwlk 30022 ordtrestNEW 33894 ordtrest2NEWlem 33895 omsval 34267 orrvcval4 34439 orrvcoel 34440 orrvccel 34441 funray 36124 fvray 36125 itg2addnclem2 37662 cntotbnd 37786 lcfr 41574 hlhilocv 41946 pellfundval 42863 elmnc 43119 rfovd 43984 fsovd 43991 fsovcnvlem 43996 ntrneibex 44056 dvnprodlem2 45938 dvnprodlem3 45939 dvnprod 45940 fvmptrab 47286 rmsuppss 48364 scmsuppss 48365 dmatALTbas 48396 |
| Copyright terms: Public domain | W3C validator |