![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabeq | Structured version Visualization version GIF version |
Description: Equality theorem for restricted class abstractions. (Contributed by NM, 15-Oct-2003.) Avoid ax-10 2129, ax-11 2146, ax-12 2163. (Revised by Gino Giotto, 20-Aug-2023.) |
Ref | Expression |
---|---|
rabeq | ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2814 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | 1 | anbi1d 629 | . 2 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
3 | 2 | rabbidva2 3426 | 1 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 {crab 3424 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-rab 3425 |
This theorem is referenced by: rabeqdv 3439 difeq1 4107 ineq1 4197 ifeq1 4524 ifeq2 4525 elfvmptrab 7016 supp0 8145 supeq2 9439 oieq2 9504 scott0 9877 mrcfval 17551 ipoval 18485 psgnfval 19410 dsmmelbas 21602 psrval 21777 ltbval 21908 opsrval 21911 m1detdiag 22421 isptfin 23342 islocfin 23343 kqval 23552 incistruhgr 28808 uvtx0 29120 vtxdg0e 29200 1hevtxdg1 29232 hashecclwwlkn1 29799 umgrhashecclwwlk 29800 ordtrestNEW 33390 ordtrest2NEWlem 33391 omsval 33781 orrvcval4 33952 orrvcoel 33953 orrvccel 33954 funray 35607 fvray 35608 itg2addnclem2 37030 cntotbnd 37154 lcfr 40946 hlhilocv 41322 pellfundval 42107 elmnc 42367 rgspnval 42399 rfovd 43241 fsovd 43248 fsovcnvlem 43253 ntrneibex 43313 dvnprodlem1 45147 dvnprodlem2 45148 dvnprodlem3 45149 dvnprod 45150 fvmptrab 46485 rmsuppss 47235 mndpsuppss 47236 scmsuppss 47237 dmatALTbas 47270 |
Copyright terms: Public domain | W3C validator |