MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabeq Structured version   Visualization version   GIF version

Theorem rabeq 3430
Description: Equality theorem for restricted class abstractions. (Contributed by NM, 15-Oct-2003.) Avoid ax-10 2141, ax-11 2157, ax-12 2177. (Revised by GG, 20-Aug-2023.)
Assertion
Ref Expression
rabeq (𝐴 = 𝐵 → {𝑥𝐴𝜑} = {𝑥𝐵𝜑})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rabeq
StepHypRef Expression
1 eleq2 2823 . . 3 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
21anbi1d 631 . 2 (𝐴 = 𝐵 → ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜑)))
32rabbidva2 3417 1 (𝐴 = 𝐵 → {𝑥𝐴𝜑} = {𝑥𝐵𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  {crab 3415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416
This theorem is referenced by:  rabeqdv  3431  difeq1  4094  ineq1  4188  ifeq1  4504  ifeq2  4505  elfvmptrab  7015  supp0  8164  supeq2  9460  oieq2  9527  scott0  9900  mrcfval  17620  ipoval  18540  mndpsuppss  18743  psgnfval  19481  rgspnval  20572  dsmmelbas  21699  psrval  21875  ltbval  22001  opsrval  22004  m1detdiag  22535  isptfin  23454  islocfin  23455  kqval  23664  incistruhgr  29058  uvtx0  29373  vtxdg0e  29454  1hevtxdg1  29486  hashecclwwlkn1  30058  umgrhashecclwwlk  30059  ordtrestNEW  33952  ordtrest2NEWlem  33953  omsval  34325  orrvcval4  34497  orrvcoel  34498  orrvccel  34499  funray  36158  fvray  36159  itg2addnclem2  37696  cntotbnd  37820  lcfr  41604  hlhilocv  41976  pellfundval  42903  elmnc  43160  rfovd  44025  fsovd  44032  fsovcnvlem  44037  ntrneibex  44097  dvnprodlem2  45976  dvnprodlem3  45977  dvnprod  45978  fvmptrab  47321  rmsuppss  48345  scmsuppss  48346  dmatALTbas  48377
  Copyright terms: Public domain W3C validator