| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabeq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for restricted class abstractions. (Contributed by NM, 15-Oct-2003.) Avoid ax-10 2141, ax-11 2157, ax-12 2177. (Revised by GG, 20-Aug-2023.) |
| Ref | Expression |
|---|---|
| rabeq | ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2823 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | 1 | anbi1d 631 | . 2 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
| 3 | 2 | rabbidva2 3417 | 1 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 {crab 3415 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 |
| This theorem is referenced by: rabeqdv 3431 difeq1 4094 ineq1 4188 ifeq1 4504 ifeq2 4505 elfvmptrab 7015 supp0 8164 supeq2 9460 oieq2 9527 scott0 9900 mrcfval 17620 ipoval 18540 mndpsuppss 18743 psgnfval 19481 rgspnval 20572 dsmmelbas 21699 psrval 21875 ltbval 22001 opsrval 22004 m1detdiag 22535 isptfin 23454 islocfin 23455 kqval 23664 incistruhgr 29058 uvtx0 29373 vtxdg0e 29454 1hevtxdg1 29486 hashecclwwlkn1 30058 umgrhashecclwwlk 30059 ordtrestNEW 33952 ordtrest2NEWlem 33953 omsval 34325 orrvcval4 34497 orrvcoel 34498 orrvccel 34499 funray 36158 fvray 36159 itg2addnclem2 37696 cntotbnd 37820 lcfr 41604 hlhilocv 41976 pellfundval 42903 elmnc 43160 rfovd 44025 fsovd 44032 fsovcnvlem 44037 ntrneibex 44097 dvnprodlem2 45976 dvnprodlem3 45977 dvnprod 45978 fvmptrab 47321 rmsuppss 48345 scmsuppss 48346 dmatALTbas 48377 |
| Copyright terms: Public domain | W3C validator |