| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabeq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for restricted class abstractions. (Contributed by NM, 15-Oct-2003.) Avoid ax-10 2142, ax-11 2158, ax-12 2178. (Revised by GG, 20-Aug-2023.) |
| Ref | Expression |
|---|---|
| rabeq | ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2817 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | 1 | anbi1d 631 | . 2 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
| 3 | 2 | rabbidva2 3404 | 1 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3402 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 |
| This theorem is referenced by: rabeqdv 3418 difeq1 4078 ineq1 4172 ifeq1 4488 ifeq2 4489 elfvmptrab 6979 supp0 8121 supeq2 9375 oieq2 9442 scott0 9815 mrcfval 17549 ipoval 18471 mndpsuppss 18674 psgnfval 19414 rgspnval 20532 dsmmelbas 21681 psrval 21857 ltbval 21983 opsrval 21986 m1detdiag 22517 isptfin 23436 islocfin 23437 kqval 23646 incistruhgr 29059 uvtx0 29374 vtxdg0e 29455 1hevtxdg1 29487 hashecclwwlkn1 30056 umgrhashecclwwlk 30057 ordtrestNEW 33904 ordtrest2NEWlem 33905 omsval 34277 orrvcval4 34449 orrvcoel 34450 orrvccel 34451 funray 36121 fvray 36122 itg2addnclem2 37659 cntotbnd 37783 lcfr 41572 hlhilocv 41944 pellfundval 42861 elmnc 43118 rfovd 43983 fsovd 43990 fsovcnvlem 43995 ntrneibex 44055 dvnprodlem2 45938 dvnprodlem3 45939 dvnprod 45940 fvmptrab 47286 rmsuppss 48351 scmsuppss 48352 dmatALTbas 48383 |
| Copyright terms: Public domain | W3C validator |