| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabeq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for restricted class abstractions. (Contributed by NM, 15-Oct-2003.) Avoid ax-10 2142, ax-11 2158, ax-12 2178. (Revised by GG, 20-Aug-2023.) |
| Ref | Expression |
|---|---|
| rabeq | ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2817 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | 1 | anbi1d 631 | . 2 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
| 3 | 2 | rabbidva2 3396 | 1 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3394 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 |
| This theorem is referenced by: rabeqdv 3410 difeq1 4070 ineq1 4164 ifeq1 4480 ifeq2 4481 elfvmptrab 6959 supp0 8098 supeq2 9338 oieq2 9405 scott0 9782 mrcfval 17514 ipoval 18436 mndpsuppss 18639 psgnfval 19379 rgspnval 20497 dsmmelbas 21646 psrval 21822 ltbval 21948 opsrval 21951 m1detdiag 22482 isptfin 23401 islocfin 23402 kqval 23611 incistruhgr 29024 uvtx0 29339 vtxdg0e 29420 1hevtxdg1 29452 hashecclwwlkn1 30021 umgrhashecclwwlk 30022 ordtrestNEW 33888 ordtrest2NEWlem 33889 omsval 34261 orrvcval4 34433 orrvcoel 34434 orrvccel 34435 funray 36118 fvray 36119 itg2addnclem2 37656 cntotbnd 37780 lcfr 41568 hlhilocv 41940 pellfundval 42857 elmnc 43113 rfovd 43978 fsovd 43985 fsovcnvlem 43990 ntrneibex 44050 dvnprodlem2 45932 dvnprodlem3 45933 dvnprod 45934 fvmptrab 47280 rmsuppss 48358 scmsuppss 48359 dmatALTbas 48390 |
| Copyright terms: Public domain | W3C validator |