| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabeq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for restricted class abstractions. (Contributed by NM, 15-Oct-2003.) Avoid ax-10 2142, ax-11 2158, ax-12 2178. (Revised by GG, 20-Aug-2023.) |
| Ref | Expression |
|---|---|
| rabeq | ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2817 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | 1 | anbi1d 631 | . 2 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
| 3 | 2 | rabbidva2 3404 | 1 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3402 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 |
| This theorem is referenced by: rabeqdv 3418 difeq1 4078 ineq1 4172 ifeq1 4488 ifeq2 4489 elfvmptrab 6979 supp0 8121 supeq2 9375 oieq2 9442 scott0 9815 mrcfval 17545 ipoval 18465 mndpsuppss 18668 psgnfval 19406 rgspnval 20497 dsmmelbas 21624 psrval 21800 ltbval 21926 opsrval 21929 m1detdiag 22460 isptfin 23379 islocfin 23380 kqval 23589 incistruhgr 28982 uvtx0 29297 vtxdg0e 29378 1hevtxdg1 29410 hashecclwwlkn1 29979 umgrhashecclwwlk 29980 ordtrestNEW 33884 ordtrest2NEWlem 33885 omsval 34257 orrvcval4 34429 orrvcoel 34430 orrvccel 34431 funray 36101 fvray 36102 itg2addnclem2 37639 cntotbnd 37763 lcfr 41552 hlhilocv 41924 pellfundval 42841 elmnc 43098 rfovd 43963 fsovd 43970 fsovcnvlem 43975 ntrneibex 44035 dvnprodlem2 45918 dvnprodlem3 45919 dvnprod 45920 fvmptrab 47266 rmsuppss 48331 scmsuppss 48332 dmatALTbas 48363 |
| Copyright terms: Public domain | W3C validator |