![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabeq | Structured version Visualization version GIF version |
Description: Equality theorem for restricted class abstractions. (Contributed by NM, 15-Oct-2003.) Avoid ax-10 2139, ax-11 2155, ax-12 2175. (Revised by GG, 20-Aug-2023.) |
Ref | Expression |
---|---|
rabeq | ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq2 2828 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | 1 | anbi1d 631 | . 2 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
3 | 2 | rabbidva2 3435 | 1 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 {crab 3433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 |
This theorem is referenced by: rabeqdv 3449 difeq1 4129 ineq1 4221 ifeq1 4535 ifeq2 4536 elfvmptrab 7045 supp0 8189 supeq2 9486 oieq2 9551 scott0 9924 mrcfval 17653 ipoval 18588 mndpsuppss 18791 psgnfval 19533 rgspnval 20629 dsmmelbas 21777 psrval 21953 ltbval 22079 opsrval 22082 m1detdiag 22619 isptfin 23540 islocfin 23541 kqval 23750 incistruhgr 29111 uvtx0 29426 vtxdg0e 29507 1hevtxdg1 29539 hashecclwwlkn1 30106 umgrhashecclwwlk 30107 ordtrestNEW 33882 ordtrest2NEWlem 33883 omsval 34275 orrvcval4 34446 orrvcoel 34447 orrvccel 34448 funray 36122 fvray 36123 itg2addnclem2 37659 cntotbnd 37783 lcfr 41568 hlhilocv 41944 pellfundval 42868 elmnc 43125 rfovd 43991 fsovd 43998 fsovcnvlem 44003 ntrneibex 44063 dvnprodlem2 45903 dvnprodlem3 45904 dvnprod 45905 fvmptrab 47242 rmsuppss 48215 scmsuppss 48216 dmatALTbas 48247 |
Copyright terms: Public domain | W3C validator |