| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabeq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for restricted class abstractions. (Contributed by NM, 15-Oct-2003.) Avoid ax-10 2140, ax-11 2156, ax-12 2176. (Revised by GG, 20-Aug-2023.) |
| Ref | Expression |
|---|---|
| rabeq | ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2822 | . . 3 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | 1 | anbi1d 631 | . 2 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
| 3 | 2 | rabbidva2 3421 | 1 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 {crab 3419 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 |
| This theorem is referenced by: rabeqdv 3435 difeq1 4099 ineq1 4193 ifeq1 4509 ifeq2 4510 elfvmptrab 7025 supp0 8172 supeq2 9470 oieq2 9535 scott0 9908 mrcfval 17623 ipoval 18545 mndpsuppss 18748 psgnfval 19487 rgspnval 20581 dsmmelbas 21714 psrval 21890 ltbval 22016 opsrval 22019 m1detdiag 22552 isptfin 23471 islocfin 23472 kqval 23681 incistruhgr 29025 uvtx0 29340 vtxdg0e 29421 1hevtxdg1 29453 hashecclwwlkn1 30025 umgrhashecclwwlk 30026 ordtrestNEW 33895 ordtrest2NEWlem 33896 omsval 34270 orrvcval4 34442 orrvcoel 34443 orrvccel 34444 funray 36116 fvray 36117 itg2addnclem2 37654 cntotbnd 37778 lcfr 41562 hlhilocv 41938 pellfundval 42869 elmnc 43126 rfovd 43991 fsovd 43998 fsovcnvlem 44003 ntrneibex 44063 dvnprodlem2 45934 dvnprodlem3 45935 dvnprod 45936 fvmptrab 47277 rmsuppss 48259 scmsuppss 48260 dmatALTbas 48291 |
| Copyright terms: Public domain | W3C validator |