| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-inrab2 | Structured version Visualization version GIF version | ||
| Description: Shorter proof of inrab 4265. (Contributed by BJ, 21-Apr-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-inrab2 | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-inrab 37044 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ (𝐴 ∩ 𝐴) ∣ (𝜑 ∧ 𝜓)} | |
| 2 | nfv 1915 | . . . 4 ⊢ Ⅎ𝑥⊤ | |
| 3 | inidm 4176 | . . . . 5 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
| 4 | 3 | a1i 11 | . . . 4 ⊢ (⊤ → (𝐴 ∩ 𝐴) = 𝐴) |
| 5 | 2, 4 | rabeqd 3424 | . . 3 ⊢ (⊤ → {𝑥 ∈ (𝐴 ∩ 𝐴) ∣ (𝜑 ∧ 𝜓)} = {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)}) |
| 6 | 5 | mptru 1548 | . 2 ⊢ {𝑥 ∈ (𝐴 ∩ 𝐴) ∣ (𝜑 ∧ 𝜓)} = {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)} |
| 7 | 1, 6 | eqtri 2756 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ⊤wtru 1542 {crab 3396 ∩ cin 3897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-in 3905 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |