Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-inrab2 Structured version   Visualization version   GIF version

Theorem bj-inrab2 37045
Description: Shorter proof of inrab 4265. (Contributed by BJ, 21-Apr-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-inrab2 ({𝑥𝐴𝜑} ∩ {𝑥𝐴𝜓}) = {𝑥𝐴 ∣ (𝜑𝜓)}

Proof of Theorem bj-inrab2
StepHypRef Expression
1 bj-inrab 37044 . 2 ({𝑥𝐴𝜑} ∩ {𝑥𝐴𝜓}) = {𝑥 ∈ (𝐴𝐴) ∣ (𝜑𝜓)}
2 nfv 1915 . . . 4 𝑥
3 inidm 4176 . . . . 5 (𝐴𝐴) = 𝐴
43a1i 11 . . . 4 (⊤ → (𝐴𝐴) = 𝐴)
52, 4rabeqd 3424 . . 3 (⊤ → {𝑥 ∈ (𝐴𝐴) ∣ (𝜑𝜓)} = {𝑥𝐴 ∣ (𝜑𝜓)})
65mptru 1548 . 2 {𝑥 ∈ (𝐴𝐴) ∣ (𝜑𝜓)} = {𝑥𝐴 ∣ (𝜑𝜓)}
71, 6eqtri 2756 1 ({𝑥𝐴𝜑} ∩ {𝑥𝐴𝜓}) = {𝑥𝐴 ∣ (𝜑𝜓)}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wtru 1542  {crab 3396  cin 3897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-12 2182  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-in 3905
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator