Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-inrab2 | Structured version Visualization version GIF version |
Description: Shorter proof of inrab 4237. (Contributed by BJ, 21-Apr-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-inrab2 | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-inrab 35042 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ (𝐴 ∩ 𝐴) ∣ (𝜑 ∧ 𝜓)} | |
2 | nfv 1918 | . . . 4 ⊢ Ⅎ𝑥⊤ | |
3 | inidm 4149 | . . . . 5 ⊢ (𝐴 ∩ 𝐴) = 𝐴 | |
4 | 3 | a1i 11 | . . . 4 ⊢ (⊤ → (𝐴 ∩ 𝐴) = 𝐴) |
5 | 2, 4 | bj-rabeqd 35034 | . . 3 ⊢ (⊤ → {𝑥 ∈ (𝐴 ∩ 𝐴) ∣ (𝜑 ∧ 𝜓)} = {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)}) |
6 | 5 | mptru 1546 | . 2 ⊢ {𝑥 ∈ (𝐴 ∩ 𝐴) ∣ (𝜑 ∧ 𝜓)} = {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)} |
7 | 1, 6 | eqtri 2766 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ⊤wtru 1540 {crab 3067 ∩ cin 3882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |