![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-rabeqbida | Structured version Visualization version GIF version |
Description: Version of rabeqbidva 3431 with two disjoint variable conditions removed and the third replaced by a nonfreeness hypothesis. (Contributed by BJ, 27-Apr-2019.) |
Ref | Expression |
---|---|
bj-rabeqbida.nf | ⊢ Ⅎ𝑥𝜑 |
bj-rabeqbida.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
bj-rabeqbida.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
bj-rabeqbida | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-rabeqbida.nf | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | bj-rabeqbida.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
3 | 1, 2 | rabbida 3420 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) |
4 | bj-rabeqbida.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
5 | 1, 4 | bj-rabeqd 33809 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜒} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
6 | 3, 5 | eqtrd 2831 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 = wceq 1522 Ⅎwnf 1765 ∈ wcel 2081 {crab 3109 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-ral 3110 df-rab 3114 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |