Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1138 Structured version   Visualization version   GIF version

Theorem bnj1138 33131
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1138.1 𝐴 = (𝐵𝐶)
Assertion
Ref Expression
bnj1138 (𝑋𝐴 ↔ (𝑋𝐵𝑋𝐶))

Proof of Theorem bnj1138
StepHypRef Expression
1 bnj1138.1 . . 3 𝐴 = (𝐵𝐶)
21eleq2i 2829 . 2 (𝑋𝐴𝑋 ∈ (𝐵𝐶))
3 elun 4103 . 2 (𝑋 ∈ (𝐵𝐶) ↔ (𝑋𝐵𝑋𝐶))
42, 3bitri 275 1 (𝑋𝐴 ↔ (𝑋𝐵𝑋𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wo 845   = wceq 1541  wcel 2106  cun 3903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2715  df-cleq 2729  df-clel 2815  df-v 3445  df-un 3910
This theorem is referenced by:  bnj1424  33181  bnj1408  33379  bnj1417  33384
  Copyright terms: Public domain W3C validator