Proof of Theorem bnj1253
Step | Hyp | Ref
| Expression |
1 | | bnj1253.6 |
. . . 4
⊢ (𝜑 ↔ (𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷))) |
2 | 1 | bnj1254 32689 |
. . 3
⊢ (𝜑 → (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷)) |
3 | | bnj1253.1 |
. . . . . . . . . . 11
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
4 | | bnj1253.2 |
. . . . . . . . . . 11
⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
5 | | bnj1253.3 |
. . . . . . . . . . 11
⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
6 | | bnj1253.4 |
. . . . . . . . . . 11
⊢ 𝐷 = (dom 𝑔 ∩ dom ℎ) |
7 | | bnj1253.5 |
. . . . . . . . . . 11
⊢ 𝐸 = {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)} |
8 | | bnj1253.7 |
. . . . . . . . . . 11
⊢ (𝜓 ↔ (𝜑 ∧ 𝑥 ∈ 𝐸 ∧ ∀𝑦 ∈ 𝐸 ¬ 𝑦𝑅𝑥)) |
9 | 3, 4, 5, 6, 7, 1, 8 | bnj1256 32895 |
. . . . . . . . . 10
⊢ (𝜑 → ∃𝑑 ∈ 𝐵 𝑔 Fn 𝑑) |
10 | 6 | bnj1292 32695 |
. . . . . . . . . . . 12
⊢ 𝐷 ⊆ dom 𝑔 |
11 | | fndm 6520 |
. . . . . . . . . . . 12
⊢ (𝑔 Fn 𝑑 → dom 𝑔 = 𝑑) |
12 | 10, 11 | sseqtrid 3969 |
. . . . . . . . . . 11
⊢ (𝑔 Fn 𝑑 → 𝐷 ⊆ 𝑑) |
13 | | fnssres 6539 |
. . . . . . . . . . 11
⊢ ((𝑔 Fn 𝑑 ∧ 𝐷 ⊆ 𝑑) → (𝑔 ↾ 𝐷) Fn 𝐷) |
14 | 12, 13 | mpdan 683 |
. . . . . . . . . 10
⊢ (𝑔 Fn 𝑑 → (𝑔 ↾ 𝐷) Fn 𝐷) |
15 | 9, 14 | bnj31 32598 |
. . . . . . . . 9
⊢ (𝜑 → ∃𝑑 ∈ 𝐵 (𝑔 ↾ 𝐷) Fn 𝐷) |
16 | 15 | bnj1265 32692 |
. . . . . . . 8
⊢ (𝜑 → (𝑔 ↾ 𝐷) Fn 𝐷) |
17 | 3, 4, 5, 6, 7, 1, 8 | bnj1259 32896 |
. . . . . . . . . 10
⊢ (𝜑 → ∃𝑑 ∈ 𝐵 ℎ Fn 𝑑) |
18 | 6 | bnj1293 32696 |
. . . . . . . . . . . 12
⊢ 𝐷 ⊆ dom ℎ |
19 | | fndm 6520 |
. . . . . . . . . . . 12
⊢ (ℎ Fn 𝑑 → dom ℎ = 𝑑) |
20 | 18, 19 | sseqtrid 3969 |
. . . . . . . . . . 11
⊢ (ℎ Fn 𝑑 → 𝐷 ⊆ 𝑑) |
21 | | fnssres 6539 |
. . . . . . . . . . 11
⊢ ((ℎ Fn 𝑑 ∧ 𝐷 ⊆ 𝑑) → (ℎ ↾ 𝐷) Fn 𝐷) |
22 | 20, 21 | mpdan 683 |
. . . . . . . . . 10
⊢ (ℎ Fn 𝑑 → (ℎ ↾ 𝐷) Fn 𝐷) |
23 | 17, 22 | bnj31 32598 |
. . . . . . . . 9
⊢ (𝜑 → ∃𝑑 ∈ 𝐵 (ℎ ↾ 𝐷) Fn 𝐷) |
24 | 23 | bnj1265 32692 |
. . . . . . . 8
⊢ (𝜑 → (ℎ ↾ 𝐷) Fn 𝐷) |
25 | | ssid 3939 |
. . . . . . . . 9
⊢ 𝐷 ⊆ 𝐷 |
26 | | fvreseq 6899 |
. . . . . . . . 9
⊢ ((((𝑔 ↾ 𝐷) Fn 𝐷 ∧ (ℎ ↾ 𝐷) Fn 𝐷) ∧ 𝐷 ⊆ 𝐷) → (((𝑔 ↾ 𝐷) ↾ 𝐷) = ((ℎ ↾ 𝐷) ↾ 𝐷) ↔ ∀𝑥 ∈ 𝐷 ((𝑔 ↾ 𝐷)‘𝑥) = ((ℎ ↾ 𝐷)‘𝑥))) |
27 | 25, 26 | mpan2 687 |
. . . . . . . 8
⊢ (((𝑔 ↾ 𝐷) Fn 𝐷 ∧ (ℎ ↾ 𝐷) Fn 𝐷) → (((𝑔 ↾ 𝐷) ↾ 𝐷) = ((ℎ ↾ 𝐷) ↾ 𝐷) ↔ ∀𝑥 ∈ 𝐷 ((𝑔 ↾ 𝐷)‘𝑥) = ((ℎ ↾ 𝐷)‘𝑥))) |
28 | 16, 24, 27 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → (((𝑔 ↾ 𝐷) ↾ 𝐷) = ((ℎ ↾ 𝐷) ↾ 𝐷) ↔ ∀𝑥 ∈ 𝐷 ((𝑔 ↾ 𝐷)‘𝑥) = ((ℎ ↾ 𝐷)‘𝑥))) |
29 | | residm 5913 |
. . . . . . . 8
⊢ ((𝑔 ↾ 𝐷) ↾ 𝐷) = (𝑔 ↾ 𝐷) |
30 | | residm 5913 |
. . . . . . . 8
⊢ ((ℎ ↾ 𝐷) ↾ 𝐷) = (ℎ ↾ 𝐷) |
31 | 29, 30 | eqeq12i 2756 |
. . . . . . 7
⊢ (((𝑔 ↾ 𝐷) ↾ 𝐷) = ((ℎ ↾ 𝐷) ↾ 𝐷) ↔ (𝑔 ↾ 𝐷) = (ℎ ↾ 𝐷)) |
32 | | df-ral 3068 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝐷 ((𝑔 ↾ 𝐷)‘𝑥) = ((ℎ ↾ 𝐷)‘𝑥) ↔ ∀𝑥(𝑥 ∈ 𝐷 → ((𝑔 ↾ 𝐷)‘𝑥) = ((ℎ ↾ 𝐷)‘𝑥))) |
33 | 28, 31, 32 | 3bitr3g 312 |
. . . . . 6
⊢ (𝜑 → ((𝑔 ↾ 𝐷) = (ℎ ↾ 𝐷) ↔ ∀𝑥(𝑥 ∈ 𝐷 → ((𝑔 ↾ 𝐷)‘𝑥) = ((ℎ ↾ 𝐷)‘𝑥)))) |
34 | | fvres 6775 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐷 → ((𝑔 ↾ 𝐷)‘𝑥) = (𝑔‘𝑥)) |
35 | | fvres 6775 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐷 → ((ℎ ↾ 𝐷)‘𝑥) = (ℎ‘𝑥)) |
36 | 34, 35 | eqeq12d 2754 |
. . . . . . . 8
⊢ (𝑥 ∈ 𝐷 → (((𝑔 ↾ 𝐷)‘𝑥) = ((ℎ ↾ 𝐷)‘𝑥) ↔ (𝑔‘𝑥) = (ℎ‘𝑥))) |
37 | 36 | pm5.74i 270 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐷 → ((𝑔 ↾ 𝐷)‘𝑥) = ((ℎ ↾ 𝐷)‘𝑥)) ↔ (𝑥 ∈ 𝐷 → (𝑔‘𝑥) = (ℎ‘𝑥))) |
38 | 37 | albii 1823 |
. . . . . 6
⊢
(∀𝑥(𝑥 ∈ 𝐷 → ((𝑔 ↾ 𝐷)‘𝑥) = ((ℎ ↾ 𝐷)‘𝑥)) ↔ ∀𝑥(𝑥 ∈ 𝐷 → (𝑔‘𝑥) = (ℎ‘𝑥))) |
39 | 33, 38 | bitrdi 286 |
. . . . 5
⊢ (𝜑 → ((𝑔 ↾ 𝐷) = (ℎ ↾ 𝐷) ↔ ∀𝑥(𝑥 ∈ 𝐷 → (𝑔‘𝑥) = (ℎ‘𝑥)))) |
40 | 39 | necon3abid 2979 |
. . . 4
⊢ (𝜑 → ((𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷) ↔ ¬ ∀𝑥(𝑥 ∈ 𝐷 → (𝑔‘𝑥) = (ℎ‘𝑥)))) |
41 | | df-rex 3069 |
. . . . 5
⊢
(∃𝑥 ∈
𝐷 (𝑔‘𝑥) ≠ (ℎ‘𝑥) ↔ ∃𝑥(𝑥 ∈ 𝐷 ∧ (𝑔‘𝑥) ≠ (ℎ‘𝑥))) |
42 | | pm4.61 404 |
. . . . . . 7
⊢ (¬
(𝑥 ∈ 𝐷 → (𝑔‘𝑥) = (ℎ‘𝑥)) ↔ (𝑥 ∈ 𝐷 ∧ ¬ (𝑔‘𝑥) = (ℎ‘𝑥))) |
43 | | df-ne 2943 |
. . . . . . . 8
⊢ ((𝑔‘𝑥) ≠ (ℎ‘𝑥) ↔ ¬ (𝑔‘𝑥) = (ℎ‘𝑥)) |
44 | 43 | anbi2i 622 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐷 ∧ (𝑔‘𝑥) ≠ (ℎ‘𝑥)) ↔ (𝑥 ∈ 𝐷 ∧ ¬ (𝑔‘𝑥) = (ℎ‘𝑥))) |
45 | 42, 44 | bitr4i 277 |
. . . . . 6
⊢ (¬
(𝑥 ∈ 𝐷 → (𝑔‘𝑥) = (ℎ‘𝑥)) ↔ (𝑥 ∈ 𝐷 ∧ (𝑔‘𝑥) ≠ (ℎ‘𝑥))) |
46 | 45 | exbii 1851 |
. . . . 5
⊢
(∃𝑥 ¬
(𝑥 ∈ 𝐷 → (𝑔‘𝑥) = (ℎ‘𝑥)) ↔ ∃𝑥(𝑥 ∈ 𝐷 ∧ (𝑔‘𝑥) ≠ (ℎ‘𝑥))) |
47 | | exnal 1830 |
. . . . 5
⊢
(∃𝑥 ¬
(𝑥 ∈ 𝐷 → (𝑔‘𝑥) = (ℎ‘𝑥)) ↔ ¬ ∀𝑥(𝑥 ∈ 𝐷 → (𝑔‘𝑥) = (ℎ‘𝑥))) |
48 | 41, 46, 47 | 3bitr2ri 299 |
. . . 4
⊢ (¬
∀𝑥(𝑥 ∈ 𝐷 → (𝑔‘𝑥) = (ℎ‘𝑥)) ↔ ∃𝑥 ∈ 𝐷 (𝑔‘𝑥) ≠ (ℎ‘𝑥)) |
49 | 40, 48 | bitrdi 286 |
. . 3
⊢ (𝜑 → ((𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷) ↔ ∃𝑥 ∈ 𝐷 (𝑔‘𝑥) ≠ (ℎ‘𝑥))) |
50 | 2, 49 | mpbid 231 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ 𝐷 (𝑔‘𝑥) ≠ (ℎ‘𝑥)) |
51 | 7 | neeq1i 3007 |
. . 3
⊢ (𝐸 ≠ ∅ ↔ {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)} ≠ ∅) |
52 | | rabn0 4316 |
. . 3
⊢ ({𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)} ≠ ∅ ↔ ∃𝑥 ∈ 𝐷 (𝑔‘𝑥) ≠ (ℎ‘𝑥)) |
53 | 51, 52 | bitri 274 |
. 2
⊢ (𝐸 ≠ ∅ ↔
∃𝑥 ∈ 𝐷 (𝑔‘𝑥) ≠ (ℎ‘𝑥)) |
54 | 50, 53 | sylibr 233 |
1
⊢ (𝜑 → 𝐸 ≠ ∅) |