Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1253 Structured version   Visualization version   GIF version

Theorem bnj1253 35029
Description: Technical lemma for bnj60 35074. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1253.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1253.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1253.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1253.4 𝐷 = (dom 𝑔 ∩ dom )
bnj1253.5 𝐸 = {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)}
bnj1253.6 (𝜑 ↔ (𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)))
bnj1253.7 (𝜓 ↔ (𝜑𝑥𝐸 ∧ ∀𝑦𝐸 ¬ 𝑦𝑅𝑥))
Assertion
Ref Expression
bnj1253 (𝜑𝐸 ≠ ∅)
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓,𝑔   𝐵,,𝑓   𝐷,𝑑   𝑥,𝐷   𝑓,𝐺,𝑔   ,𝐺   𝑅,𝑓   𝑔,𝑌   ,𝑌   𝑓,𝑑,𝑔   ,𝑑   𝑥,𝑓,𝑔   𝑥,
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓,𝑔,,𝑑)   𝜓(𝑥,𝑦,𝑓,𝑔,,𝑑)   𝐴(𝑥,𝑦,𝑔,,𝑑)   𝐵(𝑥,𝑦,𝑑)   𝐶(𝑥,𝑦,𝑓,𝑔,,𝑑)   𝐷(𝑦,𝑓,𝑔,)   𝑅(𝑥,𝑦,𝑔,,𝑑)   𝐸(𝑥,𝑦,𝑓,𝑔,,𝑑)   𝐺(𝑥,𝑦,𝑑)   𝑌(𝑥,𝑦,𝑓,𝑑)

Proof of Theorem bnj1253
StepHypRef Expression
1 bnj1253.6 . . . 4 (𝜑 ↔ (𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)))
21bnj1254 34821 . . 3 (𝜑 → (𝑔𝐷) ≠ (𝐷))
3 bnj1253.1 . . . . . . . . . . 11 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
4 bnj1253.2 . . . . . . . . . . 11 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
5 bnj1253.3 . . . . . . . . . . 11 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
6 bnj1253.4 . . . . . . . . . . 11 𝐷 = (dom 𝑔 ∩ dom )
7 bnj1253.5 . . . . . . . . . . 11 𝐸 = {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)}
8 bnj1253.7 . . . . . . . . . . 11 (𝜓 ↔ (𝜑𝑥𝐸 ∧ ∀𝑦𝐸 ¬ 𝑦𝑅𝑥))
93, 4, 5, 6, 7, 1, 8bnj1256 35027 . . . . . . . . . 10 (𝜑 → ∃𝑑𝐵 𝑔 Fn 𝑑)
106bnj1292 34827 . . . . . . . . . . . 12 𝐷 ⊆ dom 𝑔
11 fndm 6584 . . . . . . . . . . . 12 (𝑔 Fn 𝑑 → dom 𝑔 = 𝑑)
1210, 11sseqtrid 3972 . . . . . . . . . . 11 (𝑔 Fn 𝑑𝐷𝑑)
13 fnssres 6604 . . . . . . . . . . 11 ((𝑔 Fn 𝑑𝐷𝑑) → (𝑔𝐷) Fn 𝐷)
1412, 13mpdan 687 . . . . . . . . . 10 (𝑔 Fn 𝑑 → (𝑔𝐷) Fn 𝐷)
159, 14bnj31 34731 . . . . . . . . 9 (𝜑 → ∃𝑑𝐵 (𝑔𝐷) Fn 𝐷)
1615bnj1265 34824 . . . . . . . 8 (𝜑 → (𝑔𝐷) Fn 𝐷)
173, 4, 5, 6, 7, 1, 8bnj1259 35028 . . . . . . . . . 10 (𝜑 → ∃𝑑𝐵 Fn 𝑑)
186bnj1293 34828 . . . . . . . . . . . 12 𝐷 ⊆ dom
19 fndm 6584 . . . . . . . . . . . 12 ( Fn 𝑑 → dom = 𝑑)
2018, 19sseqtrid 3972 . . . . . . . . . . 11 ( Fn 𝑑𝐷𝑑)
21 fnssres 6604 . . . . . . . . . . 11 (( Fn 𝑑𝐷𝑑) → (𝐷) Fn 𝐷)
2220, 21mpdan 687 . . . . . . . . . 10 ( Fn 𝑑 → (𝐷) Fn 𝐷)
2317, 22bnj31 34731 . . . . . . . . 9 (𝜑 → ∃𝑑𝐵 (𝐷) Fn 𝐷)
2423bnj1265 34824 . . . . . . . 8 (𝜑 → (𝐷) Fn 𝐷)
25 ssid 3952 . . . . . . . . 9 𝐷𝐷
26 fvreseq 6973 . . . . . . . . 9 ((((𝑔𝐷) Fn 𝐷 ∧ (𝐷) Fn 𝐷) ∧ 𝐷𝐷) → (((𝑔𝐷) ↾ 𝐷) = ((𝐷) ↾ 𝐷) ↔ ∀𝑥𝐷 ((𝑔𝐷)‘𝑥) = ((𝐷)‘𝑥)))
2725, 26mpan2 691 . . . . . . . 8 (((𝑔𝐷) Fn 𝐷 ∧ (𝐷) Fn 𝐷) → (((𝑔𝐷) ↾ 𝐷) = ((𝐷) ↾ 𝐷) ↔ ∀𝑥𝐷 ((𝑔𝐷)‘𝑥) = ((𝐷)‘𝑥)))
2816, 24, 27syl2anc 584 . . . . . . 7 (𝜑 → (((𝑔𝐷) ↾ 𝐷) = ((𝐷) ↾ 𝐷) ↔ ∀𝑥𝐷 ((𝑔𝐷)‘𝑥) = ((𝐷)‘𝑥)))
29 residm 5958 . . . . . . . 8 ((𝑔𝐷) ↾ 𝐷) = (𝑔𝐷)
30 residm 5958 . . . . . . . 8 ((𝐷) ↾ 𝐷) = (𝐷)
3129, 30eqeq12i 2749 . . . . . . 7 (((𝑔𝐷) ↾ 𝐷) = ((𝐷) ↾ 𝐷) ↔ (𝑔𝐷) = (𝐷))
32 df-ral 3048 . . . . . . 7 (∀𝑥𝐷 ((𝑔𝐷)‘𝑥) = ((𝐷)‘𝑥) ↔ ∀𝑥(𝑥𝐷 → ((𝑔𝐷)‘𝑥) = ((𝐷)‘𝑥)))
3328, 31, 323bitr3g 313 . . . . . 6 (𝜑 → ((𝑔𝐷) = (𝐷) ↔ ∀𝑥(𝑥𝐷 → ((𝑔𝐷)‘𝑥) = ((𝐷)‘𝑥))))
34 fvres 6841 . . . . . . . . 9 (𝑥𝐷 → ((𝑔𝐷)‘𝑥) = (𝑔𝑥))
35 fvres 6841 . . . . . . . . 9 (𝑥𝐷 → ((𝐷)‘𝑥) = (𝑥))
3634, 35eqeq12d 2747 . . . . . . . 8 (𝑥𝐷 → (((𝑔𝐷)‘𝑥) = ((𝐷)‘𝑥) ↔ (𝑔𝑥) = (𝑥)))
3736pm5.74i 271 . . . . . . 7 ((𝑥𝐷 → ((𝑔𝐷)‘𝑥) = ((𝐷)‘𝑥)) ↔ (𝑥𝐷 → (𝑔𝑥) = (𝑥)))
3837albii 1820 . . . . . 6 (∀𝑥(𝑥𝐷 → ((𝑔𝐷)‘𝑥) = ((𝐷)‘𝑥)) ↔ ∀𝑥(𝑥𝐷 → (𝑔𝑥) = (𝑥)))
3933, 38bitrdi 287 . . . . 5 (𝜑 → ((𝑔𝐷) = (𝐷) ↔ ∀𝑥(𝑥𝐷 → (𝑔𝑥) = (𝑥))))
4039necon3abid 2964 . . . 4 (𝜑 → ((𝑔𝐷) ≠ (𝐷) ↔ ¬ ∀𝑥(𝑥𝐷 → (𝑔𝑥) = (𝑥))))
41 df-rex 3057 . . . . 5 (∃𝑥𝐷 (𝑔𝑥) ≠ (𝑥) ↔ ∃𝑥(𝑥𝐷 ∧ (𝑔𝑥) ≠ (𝑥)))
42 pm4.61 404 . . . . . . 7 (¬ (𝑥𝐷 → (𝑔𝑥) = (𝑥)) ↔ (𝑥𝐷 ∧ ¬ (𝑔𝑥) = (𝑥)))
43 df-ne 2929 . . . . . . . 8 ((𝑔𝑥) ≠ (𝑥) ↔ ¬ (𝑔𝑥) = (𝑥))
4443anbi2i 623 . . . . . . 7 ((𝑥𝐷 ∧ (𝑔𝑥) ≠ (𝑥)) ↔ (𝑥𝐷 ∧ ¬ (𝑔𝑥) = (𝑥)))
4542, 44bitr4i 278 . . . . . 6 (¬ (𝑥𝐷 → (𝑔𝑥) = (𝑥)) ↔ (𝑥𝐷 ∧ (𝑔𝑥) ≠ (𝑥)))
4645exbii 1849 . . . . 5 (∃𝑥 ¬ (𝑥𝐷 → (𝑔𝑥) = (𝑥)) ↔ ∃𝑥(𝑥𝐷 ∧ (𝑔𝑥) ≠ (𝑥)))
47 exnal 1828 . . . . 5 (∃𝑥 ¬ (𝑥𝐷 → (𝑔𝑥) = (𝑥)) ↔ ¬ ∀𝑥(𝑥𝐷 → (𝑔𝑥) = (𝑥)))
4841, 46, 473bitr2ri 300 . . . 4 (¬ ∀𝑥(𝑥𝐷 → (𝑔𝑥) = (𝑥)) ↔ ∃𝑥𝐷 (𝑔𝑥) ≠ (𝑥))
4940, 48bitrdi 287 . . 3 (𝜑 → ((𝑔𝐷) ≠ (𝐷) ↔ ∃𝑥𝐷 (𝑔𝑥) ≠ (𝑥)))
502, 49mpbid 232 . 2 (𝜑 → ∃𝑥𝐷 (𝑔𝑥) ≠ (𝑥))
517neeq1i 2992 . . 3 (𝐸 ≠ ∅ ↔ {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ≠ ∅)
52 rabn0 4336 . . 3 ({𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)} ≠ ∅ ↔ ∃𝑥𝐷 (𝑔𝑥) ≠ (𝑥))
5351, 52bitri 275 . 2 (𝐸 ≠ ∅ ↔ ∃𝑥𝐷 (𝑔𝑥) ≠ (𝑥))
5450, 53sylibr 234 1 (𝜑𝐸 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wal 1539   = wceq 1541  wex 1780  wcel 2111  {cab 2709  wne 2928  wral 3047  wrex 3056  {crab 3395  cin 3896  wss 3897  c0 4280  cop 4579   class class class wbr 5089  dom cdm 5614  cres 5616   Fn wfn 6476  cfv 6481  w-bnj17 34698   predc-bnj14 34700   FrSe w-bnj15 34704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-fv 6489  df-bnj17 34699
This theorem is referenced by:  bnj1311  35036
  Copyright terms: Public domain W3C validator