| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj554 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj852 34935. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj554.19 | ⊢ (𝜂 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝)) |
| bnj554.20 | ⊢ (𝜁 ↔ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ∧ 𝑚 = suc 𝑖)) |
| bnj554.21 | ⊢ 𝐾 = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅) |
| bnj554.22 | ⊢ 𝐿 = ∪ 𝑦 ∈ (𝐺‘𝑝) pred(𝑦, 𝐴, 𝑅) |
| bnj554.23 | ⊢ 𝐾 = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅) |
| bnj554.24 | ⊢ 𝐿 = ∪ 𝑦 ∈ (𝐺‘𝑝) pred(𝑦, 𝐴, 𝑅) |
| Ref | Expression |
|---|---|
| bnj554 | ⊢ ((𝜂 ∧ 𝜁) → ((𝐺‘𝑚) = 𝐿 ↔ (𝐺‘suc 𝑖) = 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj554.19 | . . 3 ⊢ (𝜂 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝)) | |
| 2 | 1 | bnj1254 34823 | . 2 ⊢ (𝜂 → 𝑚 = suc 𝑝) |
| 3 | bnj554.20 | . . 3 ⊢ (𝜁 ↔ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ∧ 𝑚 = suc 𝑖)) | |
| 4 | 3 | simp3bi 1148 | . 2 ⊢ (𝜁 → 𝑚 = suc 𝑖) |
| 5 | simpr 484 | . . 3 ⊢ ((𝑚 = suc 𝑝 ∧ 𝑚 = suc 𝑖) → 𝑚 = suc 𝑖) | |
| 6 | bnj551 34756 | . . 3 ⊢ ((𝑚 = suc 𝑝 ∧ 𝑚 = suc 𝑖) → 𝑝 = 𝑖) | |
| 7 | fveq2 6906 | . . . 4 ⊢ (𝑚 = suc 𝑖 → (𝐺‘𝑚) = (𝐺‘suc 𝑖)) | |
| 8 | fveq2 6906 | . . . . 5 ⊢ (𝑝 = 𝑖 → (𝐺‘𝑝) = (𝐺‘𝑖)) | |
| 9 | iuneq1 5008 | . . . . . 6 ⊢ ((𝐺‘𝑝) = (𝐺‘𝑖) → ∪ 𝑦 ∈ (𝐺‘𝑝) pred(𝑦, 𝐴, 𝑅) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅)) | |
| 10 | bnj554.24 | . . . . . 6 ⊢ 𝐿 = ∪ 𝑦 ∈ (𝐺‘𝑝) pred(𝑦, 𝐴, 𝑅) | |
| 11 | bnj554.23 | . . . . . 6 ⊢ 𝐾 = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅) | |
| 12 | 9, 10, 11 | 3eqtr4g 2802 | . . . . 5 ⊢ ((𝐺‘𝑝) = (𝐺‘𝑖) → 𝐿 = 𝐾) |
| 13 | 8, 12 | syl 17 | . . . 4 ⊢ (𝑝 = 𝑖 → 𝐿 = 𝐾) |
| 14 | 7, 13 | eqeqan12d 2751 | . . 3 ⊢ ((𝑚 = suc 𝑖 ∧ 𝑝 = 𝑖) → ((𝐺‘𝑚) = 𝐿 ↔ (𝐺‘suc 𝑖) = 𝐾)) |
| 15 | 5, 6, 14 | syl2anc 584 | . 2 ⊢ ((𝑚 = suc 𝑝 ∧ 𝑚 = suc 𝑖) → ((𝐺‘𝑚) = 𝐿 ↔ (𝐺‘suc 𝑖) = 𝐾)) |
| 16 | 2, 4, 15 | syl2an 596 | 1 ⊢ ((𝜂 ∧ 𝜁) → ((𝐺‘𝑚) = 𝐿 ↔ (𝐺‘suc 𝑖) = 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ∪ ciun 4991 suc csuc 6386 ‘cfv 6561 ωcom 7887 ∧ w-bnj17 34700 predc-bnj14 34702 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 ax-reg 9632 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-eprel 5584 df-fr 5637 df-suc 6390 df-iota 6514 df-fv 6569 df-bnj17 34701 |
| This theorem is referenced by: bnj558 34916 |
| Copyright terms: Public domain | W3C validator |