Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj554 Structured version   Visualization version   GIF version

Theorem bnj554 31304
Description: Technical lemma for bnj852 31326. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj554.19 (𝜂 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))
bnj554.20 (𝜁 ↔ (𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 = suc 𝑖))
bnj554.21 𝐾 = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)
bnj554.22 𝐿 = 𝑦 ∈ (𝐺𝑝) pred(𝑦, 𝐴, 𝑅)
bnj554.23 𝐾 = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)
bnj554.24 𝐿 = 𝑦 ∈ (𝐺𝑝) pred(𝑦, 𝐴, 𝑅)
Assertion
Ref Expression
bnj554 ((𝜂𝜁) → ((𝐺𝑚) = 𝐿 ↔ (𝐺‘suc 𝑖) = 𝐾))
Distinct variable groups:   𝑦,𝐺   𝑦,𝑖   𝑦,𝑝
Allowed substitution hints:   𝜂(𝑦,𝑖,𝑚,𝑛,𝑝)   𝜁(𝑦,𝑖,𝑚,𝑛,𝑝)   𝐴(𝑦,𝑖,𝑚,𝑛,𝑝)   𝐷(𝑦,𝑖,𝑚,𝑛,𝑝)   𝑅(𝑦,𝑖,𝑚,𝑛,𝑝)   𝐺(𝑖,𝑚,𝑛,𝑝)   𝐾(𝑦,𝑖,𝑚,𝑛,𝑝)   𝐿(𝑦,𝑖,𝑚,𝑛,𝑝)

Proof of Theorem bnj554
StepHypRef Expression
1 bnj554.19 . . 3 (𝜂 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))
21bnj1254 31215 . 2 (𝜂𝑚 = suc 𝑝)
3 bnj554.20 . . 3 (𝜁 ↔ (𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 = suc 𝑖))
43simp3bi 1141 . 2 (𝜁𝑚 = suc 𝑖)
5 simpr 471 . . 3 ((𝑚 = suc 𝑝𝑚 = suc 𝑖) → 𝑚 = suc 𝑖)
6 bnj551 31147 . . 3 ((𝑚 = suc 𝑝𝑚 = suc 𝑖) → 𝑝 = 𝑖)
7 fveq2 6332 . . . 4 (𝑚 = suc 𝑖 → (𝐺𝑚) = (𝐺‘suc 𝑖))
8 fveq2 6332 . . . . 5 (𝑝 = 𝑖 → (𝐺𝑝) = (𝐺𝑖))
9 iuneq1 4668 . . . . . 6 ((𝐺𝑝) = (𝐺𝑖) → 𝑦 ∈ (𝐺𝑝) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))
10 bnj554.24 . . . . . 6 𝐿 = 𝑦 ∈ (𝐺𝑝) pred(𝑦, 𝐴, 𝑅)
11 bnj554.23 . . . . . 6 𝐾 = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)
129, 10, 113eqtr4g 2830 . . . . 5 ((𝐺𝑝) = (𝐺𝑖) → 𝐿 = 𝐾)
138, 12syl 17 . . . 4 (𝑝 = 𝑖𝐿 = 𝐾)
147, 13eqeqan12d 2787 . . 3 ((𝑚 = suc 𝑖𝑝 = 𝑖) → ((𝐺𝑚) = 𝐿 ↔ (𝐺‘suc 𝑖) = 𝐾))
155, 6, 14syl2anc 565 . 2 ((𝑚 = suc 𝑝𝑚 = suc 𝑖) → ((𝐺𝑚) = 𝐿 ↔ (𝐺‘suc 𝑖) = 𝐾))
162, 4, 15syl2an 575 1 ((𝜂𝜁) → ((𝐺𝑚) = 𝐿 ↔ (𝐺‘suc 𝑖) = 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145   ciun 4654  suc csuc 5868  cfv 6031  ωcom 7211  w-bnj17 31089   predc-bnj14 31091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pr 5034  ax-un 7095  ax-reg 8652
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-eprel 5162  df-fr 5208  df-suc 5872  df-iota 5994  df-fv 6039  df-bnj17 31090
This theorem is referenced by:  bnj558  31307
  Copyright terms: Public domain W3C validator