| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj554 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj852 34933. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj554.19 | ⊢ (𝜂 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝)) |
| bnj554.20 | ⊢ (𝜁 ↔ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ∧ 𝑚 = suc 𝑖)) |
| bnj554.21 | ⊢ 𝐾 = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅) |
| bnj554.22 | ⊢ 𝐿 = ∪ 𝑦 ∈ (𝐺‘𝑝) pred(𝑦, 𝐴, 𝑅) |
| bnj554.23 | ⊢ 𝐾 = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅) |
| bnj554.24 | ⊢ 𝐿 = ∪ 𝑦 ∈ (𝐺‘𝑝) pred(𝑦, 𝐴, 𝑅) |
| Ref | Expression |
|---|---|
| bnj554 | ⊢ ((𝜂 ∧ 𝜁) → ((𝐺‘𝑚) = 𝐿 ↔ (𝐺‘suc 𝑖) = 𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj554.19 | . . 3 ⊢ (𝜂 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝)) | |
| 2 | 1 | bnj1254 34821 | . 2 ⊢ (𝜂 → 𝑚 = suc 𝑝) |
| 3 | bnj554.20 | . . 3 ⊢ (𝜁 ↔ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ∧ 𝑚 = suc 𝑖)) | |
| 4 | 3 | simp3bi 1147 | . 2 ⊢ (𝜁 → 𝑚 = suc 𝑖) |
| 5 | simpr 484 | . . 3 ⊢ ((𝑚 = suc 𝑝 ∧ 𝑚 = suc 𝑖) → 𝑚 = suc 𝑖) | |
| 6 | bnj551 34754 | . . 3 ⊢ ((𝑚 = suc 𝑝 ∧ 𝑚 = suc 𝑖) → 𝑝 = 𝑖) | |
| 7 | fveq2 6822 | . . . 4 ⊢ (𝑚 = suc 𝑖 → (𝐺‘𝑚) = (𝐺‘suc 𝑖)) | |
| 8 | fveq2 6822 | . . . . 5 ⊢ (𝑝 = 𝑖 → (𝐺‘𝑝) = (𝐺‘𝑖)) | |
| 9 | iuneq1 4956 | . . . . . 6 ⊢ ((𝐺‘𝑝) = (𝐺‘𝑖) → ∪ 𝑦 ∈ (𝐺‘𝑝) pred(𝑦, 𝐴, 𝑅) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅)) | |
| 10 | bnj554.24 | . . . . . 6 ⊢ 𝐿 = ∪ 𝑦 ∈ (𝐺‘𝑝) pred(𝑦, 𝐴, 𝑅) | |
| 11 | bnj554.23 | . . . . . 6 ⊢ 𝐾 = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅) | |
| 12 | 9, 10, 11 | 3eqtr4g 2791 | . . . . 5 ⊢ ((𝐺‘𝑝) = (𝐺‘𝑖) → 𝐿 = 𝐾) |
| 13 | 8, 12 | syl 17 | . . . 4 ⊢ (𝑝 = 𝑖 → 𝐿 = 𝐾) |
| 14 | 7, 13 | eqeqan12d 2745 | . . 3 ⊢ ((𝑚 = suc 𝑖 ∧ 𝑝 = 𝑖) → ((𝐺‘𝑚) = 𝐿 ↔ (𝐺‘suc 𝑖) = 𝐾)) |
| 15 | 5, 6, 14 | syl2anc 584 | . 2 ⊢ ((𝑚 = suc 𝑝 ∧ 𝑚 = suc 𝑖) → ((𝐺‘𝑚) = 𝐿 ↔ (𝐺‘suc 𝑖) = 𝐾)) |
| 16 | 2, 4, 15 | syl2an 596 | 1 ⊢ ((𝜂 ∧ 𝜁) → ((𝐺‘𝑚) = 𝐿 ↔ (𝐺‘suc 𝑖) = 𝐾)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∪ ciun 4939 suc csuc 6308 ‘cfv 6481 ωcom 7796 ∧ w-bnj17 34698 predc-bnj14 34700 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 ax-reg 9478 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-eprel 5514 df-fr 5567 df-suc 6312 df-iota 6437 df-fv 6489 df-bnj17 34699 |
| This theorem is referenced by: bnj558 34914 |
| Copyright terms: Public domain | W3C validator |