Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj554 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj852 32464. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj554.19 | ⊢ (𝜂 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝)) |
bnj554.20 | ⊢ (𝜁 ↔ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ∧ 𝑚 = suc 𝑖)) |
bnj554.21 | ⊢ 𝐾 = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅) |
bnj554.22 | ⊢ 𝐿 = ∪ 𝑦 ∈ (𝐺‘𝑝) pred(𝑦, 𝐴, 𝑅) |
bnj554.23 | ⊢ 𝐾 = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅) |
bnj554.24 | ⊢ 𝐿 = ∪ 𝑦 ∈ (𝐺‘𝑝) pred(𝑦, 𝐴, 𝑅) |
Ref | Expression |
---|---|
bnj554 | ⊢ ((𝜂 ∧ 𝜁) → ((𝐺‘𝑚) = 𝐿 ↔ (𝐺‘suc 𝑖) = 𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj554.19 | . . 3 ⊢ (𝜂 ↔ (𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ ω ∧ 𝑚 = suc 𝑝)) | |
2 | 1 | bnj1254 32352 | . 2 ⊢ (𝜂 → 𝑚 = suc 𝑝) |
3 | bnj554.20 | . . 3 ⊢ (𝜁 ↔ (𝑖 ∈ ω ∧ suc 𝑖 ∈ 𝑛 ∧ 𝑚 = suc 𝑖)) | |
4 | 3 | simp3bi 1148 | . 2 ⊢ (𝜁 → 𝑚 = suc 𝑖) |
5 | simpr 488 | . . 3 ⊢ ((𝑚 = suc 𝑝 ∧ 𝑚 = suc 𝑖) → 𝑚 = suc 𝑖) | |
6 | bnj551 32284 | . . 3 ⊢ ((𝑚 = suc 𝑝 ∧ 𝑚 = suc 𝑖) → 𝑝 = 𝑖) | |
7 | fveq2 6668 | . . . 4 ⊢ (𝑚 = suc 𝑖 → (𝐺‘𝑚) = (𝐺‘suc 𝑖)) | |
8 | fveq2 6668 | . . . . 5 ⊢ (𝑝 = 𝑖 → (𝐺‘𝑝) = (𝐺‘𝑖)) | |
9 | iuneq1 4894 | . . . . . 6 ⊢ ((𝐺‘𝑝) = (𝐺‘𝑖) → ∪ 𝑦 ∈ (𝐺‘𝑝) pred(𝑦, 𝐴, 𝑅) = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅)) | |
10 | bnj554.24 | . . . . . 6 ⊢ 𝐿 = ∪ 𝑦 ∈ (𝐺‘𝑝) pred(𝑦, 𝐴, 𝑅) | |
11 | bnj554.23 | . . . . . 6 ⊢ 𝐾 = ∪ 𝑦 ∈ (𝐺‘𝑖) pred(𝑦, 𝐴, 𝑅) | |
12 | 9, 10, 11 | 3eqtr4g 2798 | . . . . 5 ⊢ ((𝐺‘𝑝) = (𝐺‘𝑖) → 𝐿 = 𝐾) |
13 | 8, 12 | syl 17 | . . . 4 ⊢ (𝑝 = 𝑖 → 𝐿 = 𝐾) |
14 | 7, 13 | eqeqan12d 2755 | . . 3 ⊢ ((𝑚 = suc 𝑖 ∧ 𝑝 = 𝑖) → ((𝐺‘𝑚) = 𝐿 ↔ (𝐺‘suc 𝑖) = 𝐾)) |
15 | 5, 6, 14 | syl2anc 587 | . 2 ⊢ ((𝑚 = suc 𝑝 ∧ 𝑚 = suc 𝑖) → ((𝐺‘𝑚) = 𝐿 ↔ (𝐺‘suc 𝑖) = 𝐾)) |
16 | 2, 4, 15 | syl2an 599 | 1 ⊢ ((𝜂 ∧ 𝜁) → ((𝐺‘𝑚) = 𝐿 ↔ (𝐺‘suc 𝑖) = 𝐾)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2113 ∪ ciun 4878 suc csuc 6168 ‘cfv 6333 ωcom 7593 ∧ w-bnj17 32227 predc-bnj14 32229 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5164 ax-nul 5171 ax-pr 5293 ax-un 7473 ax-reg 9122 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3399 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-nul 4210 df-if 4412 df-sn 4514 df-pr 4516 df-op 4520 df-uni 4794 df-iun 4880 df-br 5028 df-opab 5090 df-eprel 5430 df-fr 5478 df-suc 6172 df-iota 6291 df-fv 6341 df-bnj17 32228 |
This theorem is referenced by: bnj558 32445 |
Copyright terms: Public domain | W3C validator |