Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj554 Structured version   Visualization version   GIF version

Theorem bnj554 32057
Description: Technical lemma for bnj852 32079. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj554.19 (𝜂 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))
bnj554.20 (𝜁 ↔ (𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 = suc 𝑖))
bnj554.21 𝐾 = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)
bnj554.22 𝐿 = 𝑦 ∈ (𝐺𝑝) pred(𝑦, 𝐴, 𝑅)
bnj554.23 𝐾 = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)
bnj554.24 𝐿 = 𝑦 ∈ (𝐺𝑝) pred(𝑦, 𝐴, 𝑅)
Assertion
Ref Expression
bnj554 ((𝜂𝜁) → ((𝐺𝑚) = 𝐿 ↔ (𝐺‘suc 𝑖) = 𝐾))
Distinct variable groups:   𝑦,𝐺   𝑦,𝑖   𝑦,𝑝
Allowed substitution hints:   𝜂(𝑦,𝑖,𝑚,𝑛,𝑝)   𝜁(𝑦,𝑖,𝑚,𝑛,𝑝)   𝐴(𝑦,𝑖,𝑚,𝑛,𝑝)   𝐷(𝑦,𝑖,𝑚,𝑛,𝑝)   𝑅(𝑦,𝑖,𝑚,𝑛,𝑝)   𝐺(𝑖,𝑚,𝑛,𝑝)   𝐾(𝑦,𝑖,𝑚,𝑛,𝑝)   𝐿(𝑦,𝑖,𝑚,𝑛,𝑝)

Proof of Theorem bnj554
StepHypRef Expression
1 bnj554.19 . . 3 (𝜂 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))
21bnj1254 31967 . 2 (𝜂𝑚 = suc 𝑝)
3 bnj554.20 . . 3 (𝜁 ↔ (𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 = suc 𝑖))
43simp3bi 1141 . 2 (𝜁𝑚 = suc 𝑖)
5 simpr 485 . . 3 ((𝑚 = suc 𝑝𝑚 = suc 𝑖) → 𝑚 = suc 𝑖)
6 bnj551 31899 . . 3 ((𝑚 = suc 𝑝𝑚 = suc 𝑖) → 𝑝 = 𝑖)
7 fveq2 6667 . . . 4 (𝑚 = suc 𝑖 → (𝐺𝑚) = (𝐺‘suc 𝑖))
8 fveq2 6667 . . . . 5 (𝑝 = 𝑖 → (𝐺𝑝) = (𝐺𝑖))
9 iuneq1 4932 . . . . . 6 ((𝐺𝑝) = (𝐺𝑖) → 𝑦 ∈ (𝐺𝑝) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))
10 bnj554.24 . . . . . 6 𝐿 = 𝑦 ∈ (𝐺𝑝) pred(𝑦, 𝐴, 𝑅)
11 bnj554.23 . . . . . 6 𝐾 = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)
129, 10, 113eqtr4g 2886 . . . . 5 ((𝐺𝑝) = (𝐺𝑖) → 𝐿 = 𝐾)
138, 12syl 17 . . . 4 (𝑝 = 𝑖𝐿 = 𝐾)
147, 13eqeqan12d 2843 . . 3 ((𝑚 = suc 𝑖𝑝 = 𝑖) → ((𝐺𝑚) = 𝐿 ↔ (𝐺‘suc 𝑖) = 𝐾))
155, 6, 14syl2anc 584 . 2 ((𝑚 = suc 𝑝𝑚 = suc 𝑖) → ((𝐺𝑚) = 𝐿 ↔ (𝐺‘suc 𝑖) = 𝐾))
162, 4, 15syl2an 595 1 ((𝜂𝜁) → ((𝐺𝑚) = 𝐿 ↔ (𝐺‘suc 𝑖) = 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107   ciun 4917  suc csuc 6191  cfv 6352  ωcom 7568  w-bnj17 31842   predc-bnj14 31844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pr 5326  ax-un 7451  ax-reg 9045
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-rab 3152  df-v 3502  df-sbc 3777  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-eprel 5464  df-fr 5513  df-suc 6195  df-iota 6312  df-fv 6360  df-bnj17 31843
This theorem is referenced by:  bnj558  32060
  Copyright terms: Public domain W3C validator