![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1292 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1292.1 | ⊢ 𝐴 = (𝐵 ∩ 𝐶) |
Ref | Expression |
---|---|
bnj1292 | ⊢ 𝐴 ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1292.1 | . 2 ⊢ 𝐴 = (𝐵 ∩ 𝐶) | |
2 | inss1 4258 | . 2 ⊢ (𝐵 ∩ 𝐶) ⊆ 𝐵 | |
3 | 1, 2 | eqsstri 4043 | 1 ⊢ 𝐴 ⊆ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∩ cin 3975 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-in 3983 df-ss 3993 |
This theorem is referenced by: bnj1253 34993 bnj1286 34995 bnj1280 34996 bnj1296 34997 |
Copyright terms: Public domain | W3C validator |