Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1293 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1293.1 | ⊢ 𝐴 = (𝐵 ∩ 𝐶) |
Ref | Expression |
---|---|
bnj1293 | ⊢ 𝐴 ⊆ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1293.1 | . 2 ⊢ 𝐴 = (𝐵 ∩ 𝐶) | |
2 | inss2 4120 | . 2 ⊢ (𝐵 ∩ 𝐶) ⊆ 𝐶 | |
3 | 1, 2 | eqsstri 3911 | 1 ⊢ 𝐴 ⊆ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∩ cin 3842 ⊆ wss 3843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1545 df-ex 1787 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-rab 3062 df-v 3400 df-in 3850 df-ss 3860 |
This theorem is referenced by: bnj1253 32568 bnj1286 32570 bnj1280 32571 bnj1296 32572 |
Copyright terms: Public domain | W3C validator |