Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1293 Structured version   Visualization version   GIF version

Theorem bnj1293 34792
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1293.1 𝐴 = (𝐵𝐶)
Assertion
Ref Expression
bnj1293 𝐴𝐶

Proof of Theorem bnj1293
StepHypRef Expression
1 bnj1293.1 . 2 𝐴 = (𝐵𝐶)
2 inss2 4259 . 2 (𝐵𝐶) ⊆ 𝐶
31, 2eqsstri 4043 1 𝐴𝐶
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cin 3975  wss 3976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-in 3983  df-ss 3993
This theorem is referenced by:  bnj1253  34993  bnj1286  34995  bnj1280  34996  bnj1296  34997
  Copyright terms: Public domain W3C validator