Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1293 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1293.1 | ⊢ 𝐴 = (𝐵 ∩ 𝐶) |
Ref | Expression |
---|---|
bnj1293 | ⊢ 𝐴 ⊆ 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1293.1 | . 2 ⊢ 𝐴 = (𝐵 ∩ 𝐶) | |
2 | inss2 4160 | . 2 ⊢ (𝐵 ∩ 𝐶) ⊆ 𝐶 | |
3 | 1, 2 | eqsstri 3951 | 1 ⊢ 𝐴 ⊆ 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∩ cin 3882 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: bnj1253 32897 bnj1286 32899 bnj1280 32900 bnj1296 32901 |
Copyright terms: Public domain | W3C validator |