| Step | Hyp | Ref
| Expression |
| 1 | | bnj1280.1 |
. . . . . . . 8
⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
| 2 | | bnj1280.2 |
. . . . . . . 8
⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
| 3 | | bnj1280.3 |
. . . . . . . 8
⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
| 4 | | bnj1280.4 |
. . . . . . . 8
⊢ 𝐷 = (dom 𝑔 ∩ dom ℎ) |
| 5 | | bnj1280.5 |
. . . . . . . 8
⊢ 𝐸 = {𝑥 ∈ 𝐷 ∣ (𝑔‘𝑥) ≠ (ℎ‘𝑥)} |
| 6 | | bnj1280.6 |
. . . . . . . 8
⊢ (𝜑 ↔ (𝑅 FrSe 𝐴 ∧ 𝑔 ∈ 𝐶 ∧ ℎ ∈ 𝐶 ∧ (𝑔 ↾ 𝐷) ≠ (ℎ ↾ 𝐷))) |
| 7 | | bnj1280.7 |
. . . . . . . 8
⊢ (𝜓 ↔ (𝜑 ∧ 𝑥 ∈ 𝐸 ∧ ∀𝑦 ∈ 𝐸 ¬ 𝑦𝑅𝑥)) |
| 8 | 1, 2, 3, 4, 5, 6, 7 | bnj1286 35034 |
. . . . . . 7
⊢ (𝜓 → pred(𝑥, 𝐴, 𝑅) ⊆ 𝐷) |
| 9 | 8 | sseld 3981 |
. . . . . 6
⊢ (𝜓 → (𝑧 ∈ pred(𝑥, 𝐴, 𝑅) → 𝑧 ∈ 𝐷)) |
| 10 | | bnj1280.17 |
. . . . . . . . 9
⊢ (𝜓 → ( pred(𝑥, 𝐴, 𝑅) ∩ 𝐸) = ∅) |
| 11 | | disj1 4451 |
. . . . . . . . 9
⊢ ((
pred(𝑥, 𝐴, 𝑅) ∩ 𝐸) = ∅ ↔ ∀𝑧(𝑧 ∈ pred(𝑥, 𝐴, 𝑅) → ¬ 𝑧 ∈ 𝐸)) |
| 12 | 10, 11 | sylib 218 |
. . . . . . . 8
⊢ (𝜓 → ∀𝑧(𝑧 ∈ pred(𝑥, 𝐴, 𝑅) → ¬ 𝑧 ∈ 𝐸)) |
| 13 | 12 | 19.21bi 2188 |
. . . . . . 7
⊢ (𝜓 → (𝑧 ∈ pred(𝑥, 𝐴, 𝑅) → ¬ 𝑧 ∈ 𝐸)) |
| 14 | | fveq2 6905 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → (𝑔‘𝑥) = (𝑔‘𝑧)) |
| 15 | | fveq2 6905 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑧 → (ℎ‘𝑥) = (ℎ‘𝑧)) |
| 16 | 14, 15 | neeq12d 3001 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑧 → ((𝑔‘𝑥) ≠ (ℎ‘𝑥) ↔ (𝑔‘𝑧) ≠ (ℎ‘𝑧))) |
| 17 | 16, 5 | elrab2 3694 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝐸 ↔ (𝑧 ∈ 𝐷 ∧ (𝑔‘𝑧) ≠ (ℎ‘𝑧))) |
| 18 | 17 | notbii 320 |
. . . . . . . 8
⊢ (¬
𝑧 ∈ 𝐸 ↔ ¬ (𝑧 ∈ 𝐷 ∧ (𝑔‘𝑧) ≠ (ℎ‘𝑧))) |
| 19 | | imnan 399 |
. . . . . . . 8
⊢ ((𝑧 ∈ 𝐷 → ¬ (𝑔‘𝑧) ≠ (ℎ‘𝑧)) ↔ ¬ (𝑧 ∈ 𝐷 ∧ (𝑔‘𝑧) ≠ (ℎ‘𝑧))) |
| 20 | | nne 2943 |
. . . . . . . . 9
⊢ (¬
(𝑔‘𝑧) ≠ (ℎ‘𝑧) ↔ (𝑔‘𝑧) = (ℎ‘𝑧)) |
| 21 | 20 | imbi2i 336 |
. . . . . . . 8
⊢ ((𝑧 ∈ 𝐷 → ¬ (𝑔‘𝑧) ≠ (ℎ‘𝑧)) ↔ (𝑧 ∈ 𝐷 → (𝑔‘𝑧) = (ℎ‘𝑧))) |
| 22 | 18, 19, 21 | 3bitr2i 299 |
. . . . . . 7
⊢ (¬
𝑧 ∈ 𝐸 ↔ (𝑧 ∈ 𝐷 → (𝑔‘𝑧) = (ℎ‘𝑧))) |
| 23 | 13, 22 | imbitrdi 251 |
. . . . . 6
⊢ (𝜓 → (𝑧 ∈ pred(𝑥, 𝐴, 𝑅) → (𝑧 ∈ 𝐷 → (𝑔‘𝑧) = (ℎ‘𝑧)))) |
| 24 | 9, 23 | mpdd 43 |
. . . . 5
⊢ (𝜓 → (𝑧 ∈ pred(𝑥, 𝐴, 𝑅) → (𝑔‘𝑧) = (ℎ‘𝑧))) |
| 25 | 24 | imp 406 |
. . . 4
⊢ ((𝜓 ∧ 𝑧 ∈ pred(𝑥, 𝐴, 𝑅)) → (𝑔‘𝑧) = (ℎ‘𝑧)) |
| 26 | | fvres 6924 |
. . . . . 6
⊢ (𝑧 ∈ 𝐷 → ((𝑔 ↾ 𝐷)‘𝑧) = (𝑔‘𝑧)) |
| 27 | 9, 26 | syl6 35 |
. . . . 5
⊢ (𝜓 → (𝑧 ∈ pred(𝑥, 𝐴, 𝑅) → ((𝑔 ↾ 𝐷)‘𝑧) = (𝑔‘𝑧))) |
| 28 | 27 | imp 406 |
. . . 4
⊢ ((𝜓 ∧ 𝑧 ∈ pred(𝑥, 𝐴, 𝑅)) → ((𝑔 ↾ 𝐷)‘𝑧) = (𝑔‘𝑧)) |
| 29 | | fvres 6924 |
. . . . . 6
⊢ (𝑧 ∈ 𝐷 → ((ℎ ↾ 𝐷)‘𝑧) = (ℎ‘𝑧)) |
| 30 | 9, 29 | syl6 35 |
. . . . 5
⊢ (𝜓 → (𝑧 ∈ pred(𝑥, 𝐴, 𝑅) → ((ℎ ↾ 𝐷)‘𝑧) = (ℎ‘𝑧))) |
| 31 | 30 | imp 406 |
. . . 4
⊢ ((𝜓 ∧ 𝑧 ∈ pred(𝑥, 𝐴, 𝑅)) → ((ℎ ↾ 𝐷)‘𝑧) = (ℎ‘𝑧)) |
| 32 | 25, 28, 31 | 3eqtr4d 2786 |
. . 3
⊢ ((𝜓 ∧ 𝑧 ∈ pred(𝑥, 𝐴, 𝑅)) → ((𝑔 ↾ 𝐷)‘𝑧) = ((ℎ ↾ 𝐷)‘𝑧)) |
| 33 | 32 | ralrimiva 3145 |
. 2
⊢ (𝜓 → ∀𝑧 ∈ pred (𝑥, 𝐴, 𝑅)((𝑔 ↾ 𝐷)‘𝑧) = ((ℎ ↾ 𝐷)‘𝑧)) |
| 34 | 8 | resabs1d 6025 |
. . . 4
⊢ (𝜓 → ((𝑔 ↾ 𝐷) ↾ pred(𝑥, 𝐴, 𝑅)) = (𝑔 ↾ pred(𝑥, 𝐴, 𝑅))) |
| 35 | 8 | resabs1d 6025 |
. . . 4
⊢ (𝜓 → ((ℎ ↾ 𝐷) ↾ pred(𝑥, 𝐴, 𝑅)) = (ℎ ↾ pred(𝑥, 𝐴, 𝑅))) |
| 36 | 34, 35 | eqeq12d 2752 |
. . 3
⊢ (𝜓 → (((𝑔 ↾ 𝐷) ↾ pred(𝑥, 𝐴, 𝑅)) = ((ℎ ↾ 𝐷) ↾ pred(𝑥, 𝐴, 𝑅)) ↔ (𝑔 ↾ pred(𝑥, 𝐴, 𝑅)) = (ℎ ↾ pred(𝑥, 𝐴, 𝑅)))) |
| 37 | 1, 2, 3, 4, 5, 6, 7 | bnj1256 35030 |
. . . . . . 7
⊢ (𝜑 → ∃𝑑 ∈ 𝐵 𝑔 Fn 𝑑) |
| 38 | 4 | bnj1292 34830 |
. . . . . . . . 9
⊢ 𝐷 ⊆ dom 𝑔 |
| 39 | | fndm 6670 |
. . . . . . . . 9
⊢ (𝑔 Fn 𝑑 → dom 𝑔 = 𝑑) |
| 40 | 38, 39 | sseqtrid 4025 |
. . . . . . . 8
⊢ (𝑔 Fn 𝑑 → 𝐷 ⊆ 𝑑) |
| 41 | | fnssres 6690 |
. . . . . . . 8
⊢ ((𝑔 Fn 𝑑 ∧ 𝐷 ⊆ 𝑑) → (𝑔 ↾ 𝐷) Fn 𝐷) |
| 42 | 40, 41 | mpdan 687 |
. . . . . . 7
⊢ (𝑔 Fn 𝑑 → (𝑔 ↾ 𝐷) Fn 𝐷) |
| 43 | 37, 42 | bnj31 34734 |
. . . . . 6
⊢ (𝜑 → ∃𝑑 ∈ 𝐵 (𝑔 ↾ 𝐷) Fn 𝐷) |
| 44 | 43 | bnj1265 34827 |
. . . . 5
⊢ (𝜑 → (𝑔 ↾ 𝐷) Fn 𝐷) |
| 45 | 7, 44 | bnj835 34774 |
. . . 4
⊢ (𝜓 → (𝑔 ↾ 𝐷) Fn 𝐷) |
| 46 | 1, 2, 3, 4, 5, 6, 7 | bnj1259 35031 |
. . . . . . 7
⊢ (𝜑 → ∃𝑑 ∈ 𝐵 ℎ Fn 𝑑) |
| 47 | 4 | bnj1293 34831 |
. . . . . . . . 9
⊢ 𝐷 ⊆ dom ℎ |
| 48 | | fndm 6670 |
. . . . . . . . 9
⊢ (ℎ Fn 𝑑 → dom ℎ = 𝑑) |
| 49 | 47, 48 | sseqtrid 4025 |
. . . . . . . 8
⊢ (ℎ Fn 𝑑 → 𝐷 ⊆ 𝑑) |
| 50 | | fnssres 6690 |
. . . . . . . 8
⊢ ((ℎ Fn 𝑑 ∧ 𝐷 ⊆ 𝑑) → (ℎ ↾ 𝐷) Fn 𝐷) |
| 51 | 49, 50 | mpdan 687 |
. . . . . . 7
⊢ (ℎ Fn 𝑑 → (ℎ ↾ 𝐷) Fn 𝐷) |
| 52 | 46, 51 | bnj31 34734 |
. . . . . 6
⊢ (𝜑 → ∃𝑑 ∈ 𝐵 (ℎ ↾ 𝐷) Fn 𝐷) |
| 53 | 52 | bnj1265 34827 |
. . . . 5
⊢ (𝜑 → (ℎ ↾ 𝐷) Fn 𝐷) |
| 54 | 7, 53 | bnj835 34774 |
. . . 4
⊢ (𝜓 → (ℎ ↾ 𝐷) Fn 𝐷) |
| 55 | | fvreseq 7059 |
. . . 4
⊢ ((((𝑔 ↾ 𝐷) Fn 𝐷 ∧ (ℎ ↾ 𝐷) Fn 𝐷) ∧ pred(𝑥, 𝐴, 𝑅) ⊆ 𝐷) → (((𝑔 ↾ 𝐷) ↾ pred(𝑥, 𝐴, 𝑅)) = ((ℎ ↾ 𝐷) ↾ pred(𝑥, 𝐴, 𝑅)) ↔ ∀𝑧 ∈ pred (𝑥, 𝐴, 𝑅)((𝑔 ↾ 𝐷)‘𝑧) = ((ℎ ↾ 𝐷)‘𝑧))) |
| 56 | 45, 54, 8, 55 | syl21anc 837 |
. . 3
⊢ (𝜓 → (((𝑔 ↾ 𝐷) ↾ pred(𝑥, 𝐴, 𝑅)) = ((ℎ ↾ 𝐷) ↾ pred(𝑥, 𝐴, 𝑅)) ↔ ∀𝑧 ∈ pred (𝑥, 𝐴, 𝑅)((𝑔 ↾ 𝐷)‘𝑧) = ((ℎ ↾ 𝐷)‘𝑧))) |
| 57 | 36, 56 | bitr3d 281 |
. 2
⊢ (𝜓 → ((𝑔 ↾ pred(𝑥, 𝐴, 𝑅)) = (ℎ ↾ pred(𝑥, 𝐴, 𝑅)) ↔ ∀𝑧 ∈ pred (𝑥, 𝐴, 𝑅)((𝑔 ↾ 𝐷)‘𝑧) = ((ℎ ↾ 𝐷)‘𝑧))) |
| 58 | 33, 57 | mpbird 257 |
1
⊢ (𝜓 → (𝑔 ↾ pred(𝑥, 𝐴, 𝑅)) = (ℎ ↾ pred(𝑥, 𝐴, 𝑅))) |