Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1280 Structured version   Visualization version   GIF version

Theorem bnj1280 35010
Description: Technical lemma for bnj60 35052. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1280.1 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
bnj1280.2 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
bnj1280.3 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
bnj1280.4 𝐷 = (dom 𝑔 ∩ dom )
bnj1280.5 𝐸 = {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)}
bnj1280.6 (𝜑 ↔ (𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)))
bnj1280.7 (𝜓 ↔ (𝜑𝑥𝐸 ∧ ∀𝑦𝐸 ¬ 𝑦𝑅𝑥))
bnj1280.17 (𝜓 → ( pred(𝑥, 𝐴, 𝑅) ∩ 𝐸) = ∅)
Assertion
Ref Expression
bnj1280 (𝜓 → (𝑔 ↾ pred(𝑥, 𝐴, 𝑅)) = ( ↾ pred(𝑥, 𝐴, 𝑅)))
Distinct variable groups:   𝐴,𝑑,𝑓   𝐵,𝑓,𝑔   𝐵,,𝑓   𝐷,𝑑,𝑥   𝑓,𝐺,𝑔   ,𝐺   𝑅,𝑑,𝑓   𝑔,𝑌   ,𝑌   𝑔,𝑑   𝑥,𝑓,𝑔   ,𝑑,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑓,𝑔,,𝑑)   𝜓(𝑥,𝑦,𝑓,𝑔,,𝑑)   𝐴(𝑥,𝑦,𝑔,)   𝐵(𝑥,𝑦,𝑑)   𝐶(𝑥,𝑦,𝑓,𝑔,,𝑑)   𝐷(𝑦,𝑓,𝑔,)   𝑅(𝑥,𝑦,𝑔,)   𝐸(𝑥,𝑦,𝑓,𝑔,,𝑑)   𝐺(𝑥,𝑦,𝑑)   𝑌(𝑥,𝑦,𝑓,𝑑)

Proof of Theorem bnj1280
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bnj1280.1 . . . . . . . 8 𝐵 = {𝑑 ∣ (𝑑𝐴 ∧ ∀𝑥𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)}
2 bnj1280.2 . . . . . . . 8 𝑌 = ⟨𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))⟩
3 bnj1280.3 . . . . . . . 8 𝐶 = {𝑓 ∣ ∃𝑑𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥𝑑 (𝑓𝑥) = (𝐺𝑌))}
4 bnj1280.4 . . . . . . . 8 𝐷 = (dom 𝑔 ∩ dom )
5 bnj1280.5 . . . . . . . 8 𝐸 = {𝑥𝐷 ∣ (𝑔𝑥) ≠ (𝑥)}
6 bnj1280.6 . . . . . . . 8 (𝜑 ↔ (𝑅 FrSe 𝐴𝑔𝐶𝐶 ∧ (𝑔𝐷) ≠ (𝐷)))
7 bnj1280.7 . . . . . . . 8 (𝜓 ↔ (𝜑𝑥𝐸 ∧ ∀𝑦𝐸 ¬ 𝑦𝑅𝑥))
81, 2, 3, 4, 5, 6, 7bnj1286 35009 . . . . . . 7 (𝜓 → pred(𝑥, 𝐴, 𝑅) ⊆ 𝐷)
98sseld 3945 . . . . . 6 (𝜓 → (𝑧 ∈ pred(𝑥, 𝐴, 𝑅) → 𝑧𝐷))
10 bnj1280.17 . . . . . . . . 9 (𝜓 → ( pred(𝑥, 𝐴, 𝑅) ∩ 𝐸) = ∅)
11 disj1 4415 . . . . . . . . 9 (( pred(𝑥, 𝐴, 𝑅) ∩ 𝐸) = ∅ ↔ ∀𝑧(𝑧 ∈ pred(𝑥, 𝐴, 𝑅) → ¬ 𝑧𝐸))
1210, 11sylib 218 . . . . . . . 8 (𝜓 → ∀𝑧(𝑧 ∈ pred(𝑥, 𝐴, 𝑅) → ¬ 𝑧𝐸))
131219.21bi 2190 . . . . . . 7 (𝜓 → (𝑧 ∈ pred(𝑥, 𝐴, 𝑅) → ¬ 𝑧𝐸))
14 fveq2 6858 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝑔𝑥) = (𝑔𝑧))
15 fveq2 6858 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝑥) = (𝑧))
1614, 15neeq12d 2986 . . . . . . . . . 10 (𝑥 = 𝑧 → ((𝑔𝑥) ≠ (𝑥) ↔ (𝑔𝑧) ≠ (𝑧)))
1716, 5elrab2 3662 . . . . . . . . 9 (𝑧𝐸 ↔ (𝑧𝐷 ∧ (𝑔𝑧) ≠ (𝑧)))
1817notbii 320 . . . . . . . 8 𝑧𝐸 ↔ ¬ (𝑧𝐷 ∧ (𝑔𝑧) ≠ (𝑧)))
19 imnan 399 . . . . . . . 8 ((𝑧𝐷 → ¬ (𝑔𝑧) ≠ (𝑧)) ↔ ¬ (𝑧𝐷 ∧ (𝑔𝑧) ≠ (𝑧)))
20 nne 2929 . . . . . . . . 9 (¬ (𝑔𝑧) ≠ (𝑧) ↔ (𝑔𝑧) = (𝑧))
2120imbi2i 336 . . . . . . . 8 ((𝑧𝐷 → ¬ (𝑔𝑧) ≠ (𝑧)) ↔ (𝑧𝐷 → (𝑔𝑧) = (𝑧)))
2218, 19, 213bitr2i 299 . . . . . . 7 𝑧𝐸 ↔ (𝑧𝐷 → (𝑔𝑧) = (𝑧)))
2313, 22imbitrdi 251 . . . . . 6 (𝜓 → (𝑧 ∈ pred(𝑥, 𝐴, 𝑅) → (𝑧𝐷 → (𝑔𝑧) = (𝑧))))
249, 23mpdd 43 . . . . 5 (𝜓 → (𝑧 ∈ pred(𝑥, 𝐴, 𝑅) → (𝑔𝑧) = (𝑧)))
2524imp 406 . . . 4 ((𝜓𝑧 ∈ pred(𝑥, 𝐴, 𝑅)) → (𝑔𝑧) = (𝑧))
26 fvres 6877 . . . . . 6 (𝑧𝐷 → ((𝑔𝐷)‘𝑧) = (𝑔𝑧))
279, 26syl6 35 . . . . 5 (𝜓 → (𝑧 ∈ pred(𝑥, 𝐴, 𝑅) → ((𝑔𝐷)‘𝑧) = (𝑔𝑧)))
2827imp 406 . . . 4 ((𝜓𝑧 ∈ pred(𝑥, 𝐴, 𝑅)) → ((𝑔𝐷)‘𝑧) = (𝑔𝑧))
29 fvres 6877 . . . . . 6 (𝑧𝐷 → ((𝐷)‘𝑧) = (𝑧))
309, 29syl6 35 . . . . 5 (𝜓 → (𝑧 ∈ pred(𝑥, 𝐴, 𝑅) → ((𝐷)‘𝑧) = (𝑧)))
3130imp 406 . . . 4 ((𝜓𝑧 ∈ pred(𝑥, 𝐴, 𝑅)) → ((𝐷)‘𝑧) = (𝑧))
3225, 28, 313eqtr4d 2774 . . 3 ((𝜓𝑧 ∈ pred(𝑥, 𝐴, 𝑅)) → ((𝑔𝐷)‘𝑧) = ((𝐷)‘𝑧))
3332ralrimiva 3125 . 2 (𝜓 → ∀𝑧 ∈ pred (𝑥, 𝐴, 𝑅)((𝑔𝐷)‘𝑧) = ((𝐷)‘𝑧))
348resabs1d 5979 . . . 4 (𝜓 → ((𝑔𝐷) ↾ pred(𝑥, 𝐴, 𝑅)) = (𝑔 ↾ pred(𝑥, 𝐴, 𝑅)))
358resabs1d 5979 . . . 4 (𝜓 → ((𝐷) ↾ pred(𝑥, 𝐴, 𝑅)) = ( ↾ pred(𝑥, 𝐴, 𝑅)))
3634, 35eqeq12d 2745 . . 3 (𝜓 → (((𝑔𝐷) ↾ pred(𝑥, 𝐴, 𝑅)) = ((𝐷) ↾ pred(𝑥, 𝐴, 𝑅)) ↔ (𝑔 ↾ pred(𝑥, 𝐴, 𝑅)) = ( ↾ pred(𝑥, 𝐴, 𝑅))))
371, 2, 3, 4, 5, 6, 7bnj1256 35005 . . . . . . 7 (𝜑 → ∃𝑑𝐵 𝑔 Fn 𝑑)
384bnj1292 34805 . . . . . . . . 9 𝐷 ⊆ dom 𝑔
39 fndm 6621 . . . . . . . . 9 (𝑔 Fn 𝑑 → dom 𝑔 = 𝑑)
4038, 39sseqtrid 3989 . . . . . . . 8 (𝑔 Fn 𝑑𝐷𝑑)
41 fnssres 6641 . . . . . . . 8 ((𝑔 Fn 𝑑𝐷𝑑) → (𝑔𝐷) Fn 𝐷)
4240, 41mpdan 687 . . . . . . 7 (𝑔 Fn 𝑑 → (𝑔𝐷) Fn 𝐷)
4337, 42bnj31 34709 . . . . . 6 (𝜑 → ∃𝑑𝐵 (𝑔𝐷) Fn 𝐷)
4443bnj1265 34802 . . . . 5 (𝜑 → (𝑔𝐷) Fn 𝐷)
457, 44bnj835 34749 . . . 4 (𝜓 → (𝑔𝐷) Fn 𝐷)
461, 2, 3, 4, 5, 6, 7bnj1259 35006 . . . . . . 7 (𝜑 → ∃𝑑𝐵 Fn 𝑑)
474bnj1293 34806 . . . . . . . . 9 𝐷 ⊆ dom
48 fndm 6621 . . . . . . . . 9 ( Fn 𝑑 → dom = 𝑑)
4947, 48sseqtrid 3989 . . . . . . . 8 ( Fn 𝑑𝐷𝑑)
50 fnssres 6641 . . . . . . . 8 (( Fn 𝑑𝐷𝑑) → (𝐷) Fn 𝐷)
5149, 50mpdan 687 . . . . . . 7 ( Fn 𝑑 → (𝐷) Fn 𝐷)
5246, 51bnj31 34709 . . . . . 6 (𝜑 → ∃𝑑𝐵 (𝐷) Fn 𝐷)
5352bnj1265 34802 . . . . 5 (𝜑 → (𝐷) Fn 𝐷)
547, 53bnj835 34749 . . . 4 (𝜓 → (𝐷) Fn 𝐷)
55 fvreseq 7012 . . . 4 ((((𝑔𝐷) Fn 𝐷 ∧ (𝐷) Fn 𝐷) ∧ pred(𝑥, 𝐴, 𝑅) ⊆ 𝐷) → (((𝑔𝐷) ↾ pred(𝑥, 𝐴, 𝑅)) = ((𝐷) ↾ pred(𝑥, 𝐴, 𝑅)) ↔ ∀𝑧 ∈ pred (𝑥, 𝐴, 𝑅)((𝑔𝐷)‘𝑧) = ((𝐷)‘𝑧)))
5645, 54, 8, 55syl21anc 837 . . 3 (𝜓 → (((𝑔𝐷) ↾ pred(𝑥, 𝐴, 𝑅)) = ((𝐷) ↾ pred(𝑥, 𝐴, 𝑅)) ↔ ∀𝑧 ∈ pred (𝑥, 𝐴, 𝑅)((𝑔𝐷)‘𝑧) = ((𝐷)‘𝑧)))
5736, 56bitr3d 281 . 2 (𝜓 → ((𝑔 ↾ pred(𝑥, 𝐴, 𝑅)) = ( ↾ pred(𝑥, 𝐴, 𝑅)) ↔ ∀𝑧 ∈ pred (𝑥, 𝐴, 𝑅)((𝑔𝐷)‘𝑧) = ((𝐷)‘𝑧)))
5833, 57mpbird 257 1 (𝜓 → (𝑔 ↾ pred(𝑥, 𝐴, 𝑅)) = ( ↾ pred(𝑥, 𝐴, 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2109  {cab 2707  wne 2925  wral 3044  wrex 3053  {crab 3405  cin 3913  wss 3914  c0 4296  cop 4595   class class class wbr 5107  dom cdm 5638  cres 5640   Fn wfn 6506  cfv 6511  w-bnj17 34676   predc-bnj14 34678   FrSe w-bnj15 34682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519  df-bnj17 34677
This theorem is referenced by:  bnj1311  35014
  Copyright terms: Public domain W3C validator