MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbciegf Structured version   Visualization version   GIF version

Theorem sbciegf 3844
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypotheses
Ref Expression
sbciegf.1 𝑥𝜓
sbciegf.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
sbciegf (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜓))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝑉(𝑥)

Proof of Theorem sbciegf
StepHypRef Expression
1 sbciegf.1 . 2 𝑥𝜓
2 sbciegf.2 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
32ax-gen 1793 . 2 𝑥(𝑥 = 𝐴 → (𝜑𝜓))
4 sbciegft 3842 . 2 ((𝐴𝑉 ∧ Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑𝜓))) → ([𝐴 / 𝑥]𝜑𝜓))
51, 3, 4mp3an23 1453 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535   = wceq 1537  wnf 1781  wcel 2108  [wsbc 3804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-sbc 3805
This theorem is referenced by:  sbciegOLD  3846  rexsngf  4694  ralsngf  4695  opelopabgf  5559  opelopabf  5564  eqerlem  8798  bnj919  34743  bnj1464  34820  bnj1123  34962  bnj1373  35006  poimirlem25  37605  sbccomieg  42749  aomclem6  43016  fveqsb  44422
  Copyright terms: Public domain W3C validator