![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbciegf | Structured version Visualization version GIF version |
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
sbciegf.1 | ⊢ Ⅎ𝑥𝜓 |
sbciegf.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
sbciegf | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbciegf.1 | . 2 ⊢ Ⅎ𝑥𝜓 | |
2 | sbciegf.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | ax-gen 1796 | . 2 ⊢ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
4 | sbciegft 3815 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ Ⅎ𝑥𝜓 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓))) → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) | |
5 | 1, 3, 4 | mp3an23 1452 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1538 = wceq 1540 Ⅎwnf 1784 ∈ wcel 2105 [wsbc 3777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-12 2170 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-sbc 3778 |
This theorem is referenced by: sbciegOLD 3818 rexsngf 4674 ralsngf 4675 opelopabgf 5540 opelopabf 5545 eqerlem 8743 bnj919 34244 bnj1464 34321 bnj1123 34463 bnj1373 34507 poimirlem25 36980 sbccomieg 41997 aomclem6 42267 fveqsb 43678 |
Copyright terms: Public domain | W3C validator |