Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1468 Structured version   Visualization version   GIF version

Theorem bnj1468 34838
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1468.1 (𝜓 → ∀𝑥𝜓)
bnj1468.2 (𝑥 = 𝐴 → (𝜑𝜓))
bnj1468.3 (𝑦𝐴 → ∀𝑥 𝑦𝐴)
Assertion
Ref Expression
bnj1468 (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜓))
Distinct variable groups:   𝑦,𝐴   𝑦,𝑉   𝜑,𝑦   𝜓,𝑦   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝐴(𝑥)   𝑉(𝑥)

Proof of Theorem bnj1468
StepHypRef Expression
1 sbccow 3813 . 2 ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑)
2 ax-5 1907 . . 3 (𝜓 → ∀𝑦𝜓)
3 bnj1468.3 . . . . . . . 8 (𝑦𝐴 → ∀𝑥 𝑦𝐴)
43nfcii 2891 . . . . . . 7 𝑥𝐴
54nfeq2 2920 . . . . . 6 𝑥 𝑦 = 𝐴
6 nfsbc1v 3810 . . . . . . 7 𝑥[𝑦 / 𝑥]𝜑
7 bnj1468.1 . . . . . . . 8 (𝜓 → ∀𝑥𝜓)
87nf5i 2143 . . . . . . 7 𝑥𝜓
96, 8nfbi 1900 . . . . . 6 𝑥([𝑦 / 𝑥]𝜑𝜓)
105, 9nfim 1893 . . . . 5 𝑥(𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑𝜓))
1110nf5ri 2192 . . . 4 ((𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑𝜓)) → ∀𝑥(𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑𝜓)))
12 ax6ev 1966 . . . . 5 𝑥 𝑥 = 𝑦
13 eqeq1 2738 . . . . . . 7 (𝑥 = 𝑦 → (𝑥 = 𝐴𝑦 = 𝐴))
14 bnj1468.2 . . . . . . 7 (𝑥 = 𝐴 → (𝜑𝜓))
1513, 14biimtrrdi 254 . . . . . 6 (𝑥 = 𝑦 → (𝑦 = 𝐴 → (𝜑𝜓)))
16 sbceq1a 3801 . . . . . . 7 (𝑥 = 𝑦 → (𝜑[𝑦 / 𝑥]𝜑))
1716bibi1d 343 . . . . . 6 (𝑥 = 𝑦 → ((𝜑𝜓) ↔ ([𝑦 / 𝑥]𝜑𝜓)))
1815, 17sylibd 239 . . . . 5 (𝑥 = 𝑦 → (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑𝜓)))
1912, 18bnj101 34715 . . . 4 𝑥(𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑𝜓))
2011, 19bnj1131 34779 . . 3 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑𝜓))
212, 20bnj1464 34836 . 2 (𝐴𝑉 → ([𝐴 / 𝑦][𝑦 / 𝑥]𝜑𝜓))
221, 21bitr3id 285 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1534   = wceq 1536  wcel 2105  [wsbc 3790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-ex 1776  df-nf 1780  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-v 3479  df-sbc 3791
This theorem is referenced by:  bnj1463  35047
  Copyright terms: Public domain W3C validator