| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1465 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1465.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| bnj1465.2 | ⊢ (𝜓 → ∀𝑥𝜓) |
| bnj1465.3 | ⊢ (𝜒 → 𝜓) |
| Ref | Expression |
|---|---|
| bnj1465 | ⊢ ((𝜒 ∧ 𝐴 ∈ 𝑉) → ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1465.3 | . . . 4 ⊢ (𝜒 → 𝜓) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝜒 ∧ 𝐴 ∈ 𝑉) → 𝜓) |
| 3 | bnj1465.2 | . . . . 5 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 4 | bnj1465.1 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 5 | 3, 4 | bnj1464 34817 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) |
| 6 | 5 | adantl 481 | . . 3 ⊢ ((𝜒 ∧ 𝐴 ∈ 𝑉) → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) |
| 7 | 2, 6 | mpbird 257 | . 2 ⊢ ((𝜒 ∧ 𝐴 ∈ 𝑉) → [𝐴 / 𝑥]𝜑) |
| 8 | 7 | spesbcd 3863 | 1 ⊢ ((𝜒 ∧ 𝐴 ∈ 𝑉) → ∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1537 = wceq 1539 ∃wex 1778 ∈ wcel 2107 [wsbc 3770 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-v 3465 df-sbc 3771 |
| This theorem is referenced by: bnj1463 35028 |
| Copyright terms: Public domain | W3C validator |