Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1465 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1465.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
bnj1465.2 | ⊢ (𝜓 → ∀𝑥𝜓) |
bnj1465.3 | ⊢ (𝜒 → 𝜓) |
Ref | Expression |
---|---|
bnj1465 | ⊢ ((𝜒 ∧ 𝐴 ∈ 𝑉) → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1465.3 | . . . 4 ⊢ (𝜒 → 𝜓) | |
2 | 1 | adantr 481 | . . 3 ⊢ ((𝜒 ∧ 𝐴 ∈ 𝑉) → 𝜓) |
3 | bnj1465.2 | . . . . 5 ⊢ (𝜓 → ∀𝑥𝜓) | |
4 | bnj1465.1 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
5 | 3, 4 | bnj1464 32824 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) |
6 | 5 | adantl 482 | . . 3 ⊢ ((𝜒 ∧ 𝐴 ∈ 𝑉) → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) |
7 | 2, 6 | mpbird 256 | . 2 ⊢ ((𝜒 ∧ 𝐴 ∈ 𝑉) → [𝐴 / 𝑥]𝜑) |
8 | 7 | spesbcd 3816 | 1 ⊢ ((𝜒 ∧ 𝐴 ∈ 𝑉) → ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 = wceq 1539 ∃wex 1782 ∈ wcel 2106 [wsbc 3716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-v 3434 df-sbc 3717 |
This theorem is referenced by: bnj1463 33035 |
Copyright terms: Public domain | W3C validator |