Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1465 Structured version   Visualization version   GIF version

Theorem bnj1465 32833
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1465.1 (𝑥 = 𝐴 → (𝜑𝜓))
bnj1465.2 (𝜓 → ∀𝑥𝜓)
bnj1465.3 (𝜒𝜓)
Assertion
Ref Expression
bnj1465 ((𝜒𝐴𝑉) → ∃𝑥𝜑)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝜒(𝑥)

Proof of Theorem bnj1465
StepHypRef Expression
1 bnj1465.3 . . . 4 (𝜒𝜓)
21adantr 481 . . 3 ((𝜒𝐴𝑉) → 𝜓)
3 bnj1465.2 . . . . 5 (𝜓 → ∀𝑥𝜓)
4 bnj1465.1 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
53, 4bnj1464 32832 . . . 4 (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜓))
65adantl 482 . . 3 ((𝜒𝐴𝑉) → ([𝐴 / 𝑥]𝜑𝜓))
72, 6mpbird 256 . 2 ((𝜒𝐴𝑉) → [𝐴 / 𝑥]𝜑)
87spesbcd 3815 1 ((𝜒𝐴𝑉) → ∃𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1537   = wceq 1539  wex 1782  wcel 2106  [wsbc 3715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-v 3431  df-sbc 3716
This theorem is referenced by:  bnj1463  33043
  Copyright terms: Public domain W3C validator