| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1465 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1465.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| bnj1465.2 | ⊢ (𝜓 → ∀𝑥𝜓) |
| bnj1465.3 | ⊢ (𝜒 → 𝜓) |
| Ref | Expression |
|---|---|
| bnj1465 | ⊢ ((𝜒 ∧ 𝐴 ∈ 𝑉) → ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1465.3 | . . . 4 ⊢ (𝜒 → 𝜓) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝜒 ∧ 𝐴 ∈ 𝑉) → 𝜓) |
| 3 | bnj1465.2 | . . . . 5 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 4 | bnj1465.1 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 5 | 3, 4 | bnj1464 34840 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) |
| 6 | 5 | adantl 481 | . . 3 ⊢ ((𝜒 ∧ 𝐴 ∈ 𝑉) → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) |
| 7 | 2, 6 | mpbird 257 | . 2 ⊢ ((𝜒 ∧ 𝐴 ∈ 𝑉) → [𝐴 / 𝑥]𝜑) |
| 8 | 7 | spesbcd 3848 | 1 ⊢ ((𝜒 ∧ 𝐴 ∈ 𝑉) → ∃𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 [wsbc 3755 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-v 3452 df-sbc 3756 |
| This theorem is referenced by: bnj1463 35051 |
| Copyright terms: Public domain | W3C validator |