![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1465 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1465.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
bnj1465.2 | ⊢ (𝜓 → ∀𝑥𝜓) |
bnj1465.3 | ⊢ (𝜒 → 𝜓) |
Ref | Expression |
---|---|
bnj1465 | ⊢ ((𝜒 ∧ 𝐴 ∈ 𝑉) → ∃𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1465.3 | . . . 4 ⊢ (𝜒 → 𝜓) | |
2 | 1 | adantr 479 | . . 3 ⊢ ((𝜒 ∧ 𝐴 ∈ 𝑉) → 𝜓) |
3 | bnj1465.2 | . . . . 5 ⊢ (𝜓 → ∀𝑥𝜓) | |
4 | bnj1465.1 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
5 | 3, 4 | bnj1464 34689 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) |
6 | 5 | adantl 480 | . . 3 ⊢ ((𝜒 ∧ 𝐴 ∈ 𝑉) → ([𝐴 / 𝑥]𝜑 ↔ 𝜓)) |
7 | 2, 6 | mpbird 256 | . 2 ⊢ ((𝜒 ∧ 𝐴 ∈ 𝑉) → [𝐴 / 𝑥]𝜑) |
8 | 7 | spesbcd 3876 | 1 ⊢ ((𝜒 ∧ 𝐴 ∈ 𝑉) → ∃𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∀wal 1532 = wceq 1534 ∃wex 1774 ∈ wcel 2099 [wsbc 3776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ral 3052 df-rex 3061 df-v 3464 df-sbc 3777 |
This theorem is referenced by: bnj1463 34900 |
Copyright terms: Public domain | W3C validator |