Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1517 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1517.1 | ⊢ 𝐴 = {𝑥 ∣ (𝜑 ∧ 𝜓)} |
Ref | Expression |
---|---|
bnj1517 | ⊢ (𝑥 ∈ 𝐴 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1517.1 | . . 3 ⊢ 𝐴 = {𝑥 ∣ (𝜑 ∧ 𝜓)} | |
2 | 1 | bnj1436 32827 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ∧ 𝜓)) |
3 | 2 | simprd 496 | 1 ⊢ (𝑥 ∈ 𝐴 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {cab 2715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 |
This theorem is referenced by: bnj1286 33007 bnj1450 33038 bnj1501 33055 |
Copyright terms: Public domain | W3C validator |