Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1517 Structured version   Visualization version   GIF version

Theorem bnj1517 34823
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1517.1 𝐴 = {𝑥 ∣ (𝜑𝜓)}
Assertion
Ref Expression
bnj1517 (𝑥𝐴𝜓)

Proof of Theorem bnj1517
StepHypRef Expression
1 bnj1517.1 . . 3 𝐴 = {𝑥 ∣ (𝜑𝜓)}
21bnj1436 34812 . 2 (𝑥𝐴 → (𝜑𝜓))
32simprd 495 1 (𝑥𝐴𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  {cab 2712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-12 2176  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808
This theorem is referenced by:  bnj1286  34992  bnj1450  35023  bnj1501  35040
  Copyright terms: Public domain W3C validator