Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1517 Structured version   Visualization version   GIF version

Theorem bnj1517 34614
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1517.1 𝐴 = {𝑥 ∣ (𝜑𝜓)}
Assertion
Ref Expression
bnj1517 (𝑥𝐴𝜓)

Proof of Theorem bnj1517
StepHypRef Expression
1 bnj1517.1 . . 3 𝐴 = {𝑥 ∣ (𝜑𝜓)}
21bnj1436 34603 . 2 (𝑥𝐴 → (𝜑𝜓))
32simprd 494 1 (𝑥𝐴𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  {cab 2702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-12 2166  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802
This theorem is referenced by:  bnj1286  34783  bnj1450  34814  bnj1501  34831
  Copyright terms: Public domain W3C validator