Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1503 Structured version   Visualization version   GIF version

Theorem bnj1503 32231
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1503.1 (𝜑 → Fun 𝐹)
bnj1503.2 (𝜑𝐺𝐹)
bnj1503.3 (𝜑𝐴 ⊆ dom 𝐺)
Assertion
Ref Expression
bnj1503 (𝜑 → (𝐹𝐴) = (𝐺𝐴))

Proof of Theorem bnj1503
StepHypRef Expression
1 bnj1503.1 . 2 (𝜑 → Fun 𝐹)
2 bnj1503.2 . 2 (𝜑𝐺𝐹)
3 bnj1503.3 . 2 (𝜑𝐴 ⊆ dom 𝐺)
4 fun2ssres 6369 . 2 ((Fun 𝐹𝐺𝐹𝐴 ⊆ dom 𝐺) → (𝐹𝐴) = (𝐺𝐴))
51, 2, 3, 4syl3anc 1368 1 (𝜑 → (𝐹𝐴) = (𝐺𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wss 3881  dom cdm 5519  cres 5521  Fun wfun 6318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-br 5031  df-opab 5093  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-res 5531  df-fun 6326
This theorem is referenced by:  bnj1442  32431  bnj1450  32432  bnj1501  32449
  Copyright terms: Public domain W3C validator