Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1503 Structured version   Visualization version   GIF version

Theorem bnj1503 34825
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1503.1 (𝜑 → Fun 𝐹)
bnj1503.2 (𝜑𝐺𝐹)
bnj1503.3 (𝜑𝐴 ⊆ dom 𝐺)
Assertion
Ref Expression
bnj1503 (𝜑 → (𝐹𝐴) = (𝐺𝐴))

Proof of Theorem bnj1503
StepHypRef Expression
1 bnj1503.1 . 2 (𝜑 → Fun 𝐹)
2 bnj1503.2 . 2 (𝜑𝐺𝐹)
3 bnj1503.3 . 2 (𝜑𝐴 ⊆ dom 𝐺)
4 fun2ssres 6623 . 2 ((Fun 𝐹𝐺𝐹𝐴 ⊆ dom 𝐺) → (𝐹𝐴) = (𝐺𝐴))
51, 2, 3, 4syl3anc 1371 1 (𝜑 → (𝐹𝐴) = (𝐺𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wss 3976  dom cdm 5700  cres 5702  Fun wfun 6567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-res 5712  df-fun 6575
This theorem is referenced by:  bnj1442  35025  bnj1450  35026  bnj1501  35043
  Copyright terms: Public domain W3C validator