Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1503 Structured version   Visualization version   GIF version

Theorem bnj1503 34880
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj1503.1 (𝜑 → Fun 𝐹)
bnj1503.2 (𝜑𝐺𝐹)
bnj1503.3 (𝜑𝐴 ⊆ dom 𝐺)
Assertion
Ref Expression
bnj1503 (𝜑 → (𝐹𝐴) = (𝐺𝐴))

Proof of Theorem bnj1503
StepHypRef Expression
1 bnj1503.1 . 2 (𝜑 → Fun 𝐹)
2 bnj1503.2 . 2 (𝜑𝐺𝐹)
3 bnj1503.3 . 2 (𝜑𝐴 ⊆ dom 𝐺)
4 fun2ssres 6581 . 2 ((Fun 𝐹𝐺𝐹𝐴 ⊆ dom 𝐺) → (𝐹𝐴) = (𝐺𝐴))
51, 2, 3, 4syl3anc 1373 1 (𝜑 → (𝐹𝐴) = (𝐺𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wss 3926  dom cdm 5654  cres 5656  Fun wfun 6525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-res 5666  df-fun 6533
This theorem is referenced by:  bnj1442  35080  bnj1450  35081  bnj1501  35098
  Copyright terms: Public domain W3C validator