Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1436 Structured version   Visualization version   GIF version

Theorem bnj1436 32847
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1436.1 𝐴 = {𝑥𝜑}
Assertion
Ref Expression
bnj1436 (𝑥𝐴𝜑)

Proof of Theorem bnj1436
StepHypRef Expression
1 bnj1436.1 . . 3 𝐴 = {𝑥𝜑}
21abeq2i 2870 . 2 (𝑥𝐴𝜑)
32biimpi 215 1 (𝑥𝐴𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2101  {cab 2710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-12 2166  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1540  df-ex 1778  df-sb 2063  df-clab 2711  df-cleq 2725  df-clel 2811
This theorem is referenced by:  bnj1517  32858  bnj66  32868  bnj900  32937  bnj1296  33029  bnj1371  33037  bnj1374  33039  bnj1398  33042  bnj1450  33058  bnj1497  33068  bnj1498  33069  bnj1514  33071  bnj1501  33075
  Copyright terms: Public domain W3C validator