| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1436 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1436.1 | ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
| Ref | Expression |
|---|---|
| bnj1436 | ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1436.1 | . . 3 ⊢ 𝐴 = {𝑥 ∣ 𝜑} | |
| 2 | 1 | eqabri 2874 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
| 3 | 2 | biimpi 216 | 1 ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {cab 2709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 |
| This theorem is referenced by: bnj1517 34862 bnj66 34872 bnj900 34941 bnj1296 35033 bnj1371 35041 bnj1374 35043 bnj1398 35046 bnj1450 35062 bnj1497 35072 bnj1498 35073 bnj1514 35075 bnj1501 35079 |
| Copyright terms: Public domain | W3C validator |