Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1436 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj1436.1 | ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
Ref | Expression |
---|---|
bnj1436 | ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1436.1 | . . 3 ⊢ 𝐴 = {𝑥 ∣ 𝜑} | |
2 | 1 | abeq2i 2870 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
3 | 2 | biimpi 215 | 1 ⊢ (𝑥 ∈ 𝐴 → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2101 {cab 2710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-12 2166 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1540 df-ex 1778 df-sb 2063 df-clab 2711 df-cleq 2725 df-clel 2811 |
This theorem is referenced by: bnj1517 32858 bnj66 32868 bnj900 32937 bnj1296 33029 bnj1371 33037 bnj1374 33039 bnj1398 33042 bnj1450 33058 bnj1497 33068 bnj1498 33069 bnj1514 33071 bnj1501 33075 |
Copyright terms: Public domain | W3C validator |