Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1436 Structured version   Visualization version   GIF version

Theorem bnj1436 34832
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1436.1 𝐴 = {𝑥𝜑}
Assertion
Ref Expression
bnj1436 (𝑥𝐴𝜑)

Proof of Theorem bnj1436
StepHypRef Expression
1 bnj1436.1 . . 3 𝐴 = {𝑥𝜑}
21eqabri 2883 . 2 (𝑥𝐴𝜑)
32biimpi 216 1 (𝑥𝐴𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  {cab 2712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814
This theorem is referenced by:  bnj1517  34843  bnj66  34853  bnj900  34922  bnj1296  35014  bnj1371  35022  bnj1374  35024  bnj1398  35027  bnj1450  35043  bnj1497  35053  bnj1498  35054  bnj1514  35056  bnj1501  35060
  Copyright terms: Public domain W3C validator