Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1436 Structured version   Visualization version   GIF version

Theorem bnj1436 34136
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1436.1 𝐴 = {𝑥𝜑}
Assertion
Ref Expression
bnj1436 (𝑥𝐴𝜑)

Proof of Theorem bnj1436
StepHypRef Expression
1 bnj1436.1 . . 3 𝐴 = {𝑥𝜑}
21eqabri 2877 . 2 (𝑥𝐴𝜑)
32biimpi 215 1 (𝑥𝐴𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  {cab 2709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-12 2171  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810
This theorem is referenced by:  bnj1517  34147  bnj66  34157  bnj900  34226  bnj1296  34318  bnj1371  34326  bnj1374  34328  bnj1398  34331  bnj1450  34347  bnj1497  34357  bnj1498  34358  bnj1514  34360  bnj1501  34364
  Copyright terms: Public domain W3C validator