Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1436 Structured version   Visualization version   GIF version

Theorem bnj1436 34870
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1436.1 𝐴 = {𝑥𝜑}
Assertion
Ref Expression
bnj1436 (𝑥𝐴𝜑)

Proof of Theorem bnj1436
StepHypRef Expression
1 bnj1436.1 . . 3 𝐴 = {𝑥𝜑}
21eqabri 2878 . 2 (𝑥𝐴𝜑)
32biimpi 216 1 (𝑥𝐴𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  {cab 2713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2177  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809
This theorem is referenced by:  bnj1517  34881  bnj66  34891  bnj900  34960  bnj1296  35052  bnj1371  35060  bnj1374  35062  bnj1398  35065  bnj1450  35081  bnj1497  35091  bnj1498  35092  bnj1514  35094  bnj1501  35098
  Copyright terms: Public domain W3C validator